MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carddom2 Structured version   Visualization version   GIF version

Theorem carddom2 8803
Description: Two numerable sets have the dominance relationship iff their cardinalities have the subset relationship. See also carddom 9376, which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
carddom2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem carddom2
StepHypRef Expression
1 carddomi2 8796 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴𝐵))
2 brdom2 7985 . . 3 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
3 cardon 8770 . . . . . . . 8 (card‘𝐴) ∈ On
43onelssi 5836 . . . . . . 7 ((card‘𝐵) ∈ (card‘𝐴) → (card‘𝐵) ⊆ (card‘𝐴))
5 carddomi2 8796 . . . . . . . 8 ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘𝐵) ⊆ (card‘𝐴) → 𝐵𝐴))
65ancoms 469 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐵) ⊆ (card‘𝐴) → 𝐵𝐴))
7 domnsym 8086 . . . . . . 7 (𝐵𝐴 → ¬ 𝐴𝐵)
84, 6, 7syl56 36 . . . . . 6 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐵) ∈ (card‘𝐴) → ¬ 𝐴𝐵))
98con2d 129 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 → ¬ (card‘𝐵) ∈ (card‘𝐴)))
10 cardon 8770 . . . . . 6 (card‘𝐵) ∈ On
11 ontri1 5757 . . . . . 6 (((card‘𝐴) ∈ On ∧ (card‘𝐵) ∈ On) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴)))
123, 10, 11mp2an 708 . . . . 5 ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴))
139, 12syl6ibr 242 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 → (card‘𝐴) ⊆ (card‘𝐵)))
14 carden2b 8793 . . . . . 6 (𝐴𝐵 → (card‘𝐴) = (card‘𝐵))
15 eqimss 3657 . . . . . 6 ((card‘𝐴) = (card‘𝐵) → (card‘𝐴) ⊆ (card‘𝐵))
1614, 15syl 17 . . . . 5 (𝐴𝐵 → (card‘𝐴) ⊆ (card‘𝐵))
1716a1i 11 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 → (card‘𝐴) ⊆ (card‘𝐵)))
1813, 17jaod 395 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((𝐴𝐵𝐴𝐵) → (card‘𝐴) ⊆ (card‘𝐵)))
192, 18syl5bi 232 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 → (card‘𝐴) ⊆ (card‘𝐵)))
201, 19impbid 202 1 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wss 3574   class class class wbr 4653  dom cdm 5114  Oncon0 5723  cfv 5888  cen 7952  cdom 7953  csdm 7954  cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-card 8765
This theorem is referenced by:  carduni  8807  carden2  8813  cardsdom2  8814  domtri2  8815  infxpidm2  8840  cardaleph  8912  infenaleph  8914  alephinit  8918  ficardun2  9025  ackbij2  9065  cfflb  9081  fin1a2lem9  9230  carddom  9376  pwfseqlem5  9485  hashdom  13168
  Copyright terms: Public domain W3C validator