![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onnev | Structured version Visualization version GIF version |
Description: The class of ordinal numbers is not equal to the universe. (Contributed by NM, 16-Jun-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2013.) |
Ref | Expression |
---|---|
onnev | ⊢ On ≠ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsn0non 5846 | . 2 ⊢ ¬ {{∅}} ∈ On | |
2 | snex 4908 | . . . 4 ⊢ {{∅}} ∈ V | |
3 | id 22 | . . . 4 ⊢ (On = V → On = V) | |
4 | 2, 3 | syl5eleqr 2708 | . . 3 ⊢ (On = V → {{∅}} ∈ On) |
5 | 4 | necon3bi 2820 | . 2 ⊢ (¬ {{∅}} ∈ On → On ≠ V) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ On ≠ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 Vcvv 3200 ∅c0 3915 {csn 4177 Oncon0 5723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |