MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabbrex Structured version   Visualization version   GIF version

Theorem opabbrex 6695
Description: A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by BJ/AV, 20-Jun-2019.) (Proof shortened by OpenAI, 25-Mar-2020.)
Assertion
Ref Expression
opabbrex ((∀𝑥𝑦(𝑥𝑅𝑦𝜑) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ 𝑉) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ∈ V)

Proof of Theorem opabbrex
StepHypRef Expression
1 simpr 477 . 2 ((∀𝑥𝑦(𝑥𝑅𝑦𝜑) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ 𝑉) → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ 𝑉)
2 pm3.41 582 . . . . 5 ((𝑥𝑅𝑦𝜑) → ((𝑥𝑅𝑦𝜓) → 𝜑))
322alimi 1740 . . . 4 (∀𝑥𝑦(𝑥𝑅𝑦𝜑) → ∀𝑥𝑦((𝑥𝑅𝑦𝜓) → 𝜑))
43adantr 481 . . 3 ((∀𝑥𝑦(𝑥𝑅𝑦𝜑) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ 𝑉) → ∀𝑥𝑦((𝑥𝑅𝑦𝜓) → 𝜑))
5 ssopab2 5001 . . 3 (∀𝑥𝑦((𝑥𝑅𝑦𝜓) → 𝜑) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
64, 5syl 17 . 2 ((∀𝑥𝑦(𝑥𝑅𝑦𝜑) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ 𝑉) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
71, 6ssexd 4805 1 ((∀𝑥𝑦(𝑥𝑅𝑦𝜑) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ 𝑉) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1481  wcel 1990  Vcvv 3200  wss 3574   class class class wbr 4653  {copab 4712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ss 3588  df-opab 4713
This theorem is referenced by:  opabresex2d  6696  fvmptopab  6697  sprmpt2d  7350  wlkRes  26546  opabresex0d  41304
  Copyright terms: Public domain W3C validator