MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptopab Structured version   Visualization version   GIF version

Theorem fvmptopab 6697
Description: The function value of a mapping 𝑀 to a restricted binary relation expressed as an ordered-pair class abstraction: The restricted binary relation is a binary relation given as value of a function 𝐹 restricted by the condition 𝜓. (Contributed by AV, 31-Jan-2021.) (Revised by AV, 29-Oct-2021.)
Hypotheses
Ref Expression
fvmptopab.1 ((𝜑𝑧 = 𝑍) → (𝜒𝜓))
fvmptopab.2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐹𝑍)𝑦} ∈ V)
fvmptopab.3 𝑀 = (𝑧 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜒)})
Assertion
Ref Expression
fvmptopab (𝜑 → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
Distinct variable groups:   𝑧,𝐹   𝑥,𝑍,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝜓,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑧)

Proof of Theorem fvmptopab
StepHypRef Expression
1 fvmptopab.3 . . . . 5 𝑀 = (𝑧 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜒)})
21a1i 11 . . . 4 ((𝑍 ∈ V ∧ 𝜑) → 𝑀 = (𝑧 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜒)}))
3 fveq2 6191 . . . . . . . 8 (𝑧 = 𝑍 → (𝐹𝑧) = (𝐹𝑍))
43breqd 4664 . . . . . . 7 (𝑧 = 𝑍 → (𝑥(𝐹𝑧)𝑦𝑥(𝐹𝑍)𝑦))
54adantl 482 . . . . . 6 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑧 = 𝑍) → (𝑥(𝐹𝑧)𝑦𝑥(𝐹𝑍)𝑦))
6 fvmptopab.1 . . . . . . 7 ((𝜑𝑧 = 𝑍) → (𝜒𝜓))
76adantll 750 . . . . . 6 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑧 = 𝑍) → (𝜒𝜓))
85, 7anbi12d 747 . . . . 5 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑧 = 𝑍) → ((𝑥(𝐹𝑧)𝑦𝜒) ↔ (𝑥(𝐹𝑍)𝑦𝜓)))
98opabbidv 4716 . . . 4 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑧 = 𝑍) → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜒)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
10 simpl 473 . . . 4 ((𝑍 ∈ V ∧ 𝜑) → 𝑍 ∈ V)
11 id 22 . . . . . 6 (𝑥(𝐹𝑍)𝑦𝑥(𝐹𝑍)𝑦)
1211gen2 1723 . . . . 5 𝑥𝑦(𝑥(𝐹𝑍)𝑦𝑥(𝐹𝑍)𝑦)
13 fvmptopab.2 . . . . . 6 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐹𝑍)𝑦} ∈ V)
1413adantl 482 . . . . 5 ((𝑍 ∈ V ∧ 𝜑) → {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐹𝑍)𝑦} ∈ V)
15 opabbrex 6695 . . . . 5 ((∀𝑥𝑦(𝑥(𝐹𝑍)𝑦𝑥(𝐹𝑍)𝑦) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐹𝑍)𝑦} ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ∈ V)
1612, 14, 15sylancr 695 . . . 4 ((𝑍 ∈ V ∧ 𝜑) → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} ∈ V)
172, 9, 10, 16fvmptd 6288 . . 3 ((𝑍 ∈ V ∧ 𝜑) → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
1817ex 450 . 2 (𝑍 ∈ V → (𝜑 → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)}))
19 fvprc 6185 . . . 4 𝑍 ∈ V → (𝑀𝑍) = ∅)
20 br0 4701 . . . . . . . 8 ¬ 𝑥𝑦
21 fvprc 6185 . . . . . . . . 9 𝑍 ∈ V → (𝐹𝑍) = ∅)
2221breqd 4664 . . . . . . . 8 𝑍 ∈ V → (𝑥(𝐹𝑍)𝑦𝑥𝑦))
2320, 22mtbiri 317 . . . . . . 7 𝑍 ∈ V → ¬ 𝑥(𝐹𝑍)𝑦)
2423intnanrd 963 . . . . . 6 𝑍 ∈ V → ¬ (𝑥(𝐹𝑍)𝑦𝜓))
2524alrimivv 1856 . . . . 5 𝑍 ∈ V → ∀𝑥𝑦 ¬ (𝑥(𝐹𝑍)𝑦𝜓))
26 opab0 5007 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} = ∅ ↔ ∀𝑥𝑦 ¬ (𝑥(𝐹𝑍)𝑦𝜓))
2725, 26sylibr 224 . . . 4 𝑍 ∈ V → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)} = ∅)
2819, 27eqtr4d 2659 . . 3 𝑍 ∈ V → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
2928a1d 25 . 2 𝑍 ∈ V → (𝜑 → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)}))
3018, 29pm2.61i 176 1 (𝜑 → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915   class class class wbr 4653  {copab 4712  cmpt 4729  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by:  trlsfval  26592  pthsfval  26617  spthsfval  26618  clwlks  26668  crcts  26683  cycls  26684  eupths  27060
  Copyright terms: Public domain W3C validator