MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabbrex Structured version   Visualization version   Unicode version

Theorem opabbrex 6695
Description: A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by BJ/AV, 20-Jun-2019.) (Proof shortened by OpenAI, 25-Mar-2020.)
Assertion
Ref Expression
opabbrex  |-  ( ( A. x A. y
( x R y  ->  ph )  /\  { <. x ,  y >.  |  ph }  e.  V
)  ->  { <. x ,  y >.  |  ( x R y  /\  ps ) }  e.  _V )

Proof of Theorem opabbrex
StepHypRef Expression
1 simpr 477 . 2  |-  ( ( A. x A. y
( x R y  ->  ph )  /\  { <. x ,  y >.  |  ph }  e.  V
)  ->  { <. x ,  y >.  |  ph }  e.  V )
2 pm3.41 582 . . . . 5  |-  ( ( x R y  ->  ph )  ->  ( ( x R y  /\  ps )  ->  ph )
)
322alimi 1740 . . . 4  |-  ( A. x A. y ( x R y  ->  ph )  ->  A. x A. y
( ( x R y  /\  ps )  ->  ph ) )
43adantr 481 . . 3  |-  ( ( A. x A. y
( x R y  ->  ph )  /\  { <. x ,  y >.  |  ph }  e.  V
)  ->  A. x A. y ( ( x R y  /\  ps )  ->  ph ) )
5 ssopab2 5001 . . 3  |-  ( A. x A. y ( ( x R y  /\  ps )  ->  ph )  ->  { <. x ,  y
>.  |  ( x R y  /\  ps ) }  C_  { <. x ,  y >.  |  ph } )
64, 5syl 17 . 2  |-  ( ( A. x A. y
( x R y  ->  ph )  /\  { <. x ,  y >.  |  ph }  e.  V
)  ->  { <. x ,  y >.  |  ( x R y  /\  ps ) }  C_  { <. x ,  y >.  |  ph } )
71, 6ssexd 4805 1  |-  ( ( A. x A. y
( x R y  ->  ph )  /\  { <. x ,  y >.  |  ph }  e.  V
)  ->  { <. x ,  y >.  |  ( x R y  /\  ps ) }  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481    e. wcel 1990   _Vcvv 3200    C_ wss 3574   class class class wbr 4653   {copab 4712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ss 3588  df-opab 4713
This theorem is referenced by:  opabresex2d  6696  fvmptopab  6697  sprmpt2d  7350  wlkRes  26546  opabresex0d  41304
  Copyright terms: Public domain W3C validator