MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabiotafun Structured version   Visualization version   GIF version

Theorem opabiotafun 6259
Description: Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 19-May-2015.)
Hypothesis
Ref Expression
opabiota.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
Assertion
Ref Expression
opabiotafun Fun 𝐹
Distinct variable group:   𝑥,𝑦,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabiotafun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 funopab 5923 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}} ↔ ∀𝑥∃*𝑦{𝑦𝜑} = {𝑦})
2 mo2icl 3385 . . . . 5 (∀𝑧({𝑦𝜑} = {𝑧} → 𝑧 = {𝑦𝜑}) → ∃*𝑧{𝑦𝜑} = {𝑧})
3 unieq 4444 . . . . . 6 ({𝑦𝜑} = {𝑧} → {𝑦𝜑} = {𝑧})
4 vex 3203 . . . . . . 7 𝑧 ∈ V
54unisn 4451 . . . . . 6 {𝑧} = 𝑧
63, 5syl6req 2673 . . . . 5 ({𝑦𝜑} = {𝑧} → 𝑧 = {𝑦𝜑})
72, 6mpg 1724 . . . 4 ∃*𝑧{𝑦𝜑} = {𝑧}
8 nfv 1843 . . . . 5 𝑧{𝑦𝜑} = {𝑦}
9 nfab1 2766 . . . . . 6 𝑦{𝑦𝜑}
109nfeq1 2778 . . . . 5 𝑦{𝑦𝜑} = {𝑧}
11 sneq 4187 . . . . . 6 (𝑦 = 𝑧 → {𝑦} = {𝑧})
1211eqeq2d 2632 . . . . 5 (𝑦 = 𝑧 → ({𝑦𝜑} = {𝑦} ↔ {𝑦𝜑} = {𝑧}))
138, 10, 12cbvmo 2506 . . . 4 (∃*𝑦{𝑦𝜑} = {𝑦} ↔ ∃*𝑧{𝑦𝜑} = {𝑧})
147, 13mpbir 221 . . 3 ∃*𝑦{𝑦𝜑} = {𝑦}
151, 14mpgbir 1726 . 2 Fun {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
16 opabiota.1 . . 3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
1716funeqi 5909 . 2 (Fun 𝐹 ↔ Fun {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}})
1815, 17mpbir 221 1 Fun 𝐹
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  ∃*wmo 2471  {cab 2608  {csn 4177   cuni 4436  {copab 4712  Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-fun 5890
This theorem is referenced by:  opabiota  6261
  Copyright terms: Public domain W3C validator