MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabiotafun Structured version   Visualization version   Unicode version

Theorem opabiotafun 6259
Description: Define a function whose value is "the unique  y such that  ph ( x ,  y )". (Contributed by NM, 19-May-2015.)
Hypothesis
Ref Expression
opabiota.1  |-  F  =  { <. x ,  y
>.  |  { y  |  ph }  =  {
y } }
Assertion
Ref Expression
opabiotafun  |-  Fun  F
Distinct variable group:    x, y, F
Allowed substitution hints:    ph( x, y)

Proof of Theorem opabiotafun
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 funopab 5923 . . 3  |-  ( Fun 
{ <. x ,  y
>.  |  { y  |  ph }  =  {
y } }  <->  A. x E* y { y  | 
ph }  =  {
y } )
2 mo2icl 3385 . . . . 5  |-  ( A. z ( { y  |  ph }  =  { z }  ->  z  =  U. { y  |  ph } )  ->  E* z { y  |  ph }  =  { z } )
3 unieq 4444 . . . . . 6  |-  ( { y  |  ph }  =  { z }  ->  U. { y  |  ph }  =  U. { z } )
4 vex 3203 . . . . . . 7  |-  z  e. 
_V
54unisn 4451 . . . . . 6  |-  U. {
z }  =  z
63, 5syl6req 2673 . . . . 5  |-  ( { y  |  ph }  =  { z }  ->  z  =  U. { y  |  ph } )
72, 6mpg 1724 . . . 4  |-  E* z { y  |  ph }  =  { z }
8 nfv 1843 . . . . 5  |-  F/ z { y  |  ph }  =  { y }
9 nfab1 2766 . . . . . 6  |-  F/_ y { y  |  ph }
109nfeq1 2778 . . . . 5  |-  F/ y { y  |  ph }  =  { z }
11 sneq 4187 . . . . . 6  |-  ( y  =  z  ->  { y }  =  { z } )
1211eqeq2d 2632 . . . . 5  |-  ( y  =  z  ->  ( { y  |  ph }  =  { y } 
<->  { y  |  ph }  =  { z } ) )
138, 10, 12cbvmo 2506 . . . 4  |-  ( E* y { y  | 
ph }  =  {
y }  <->  E* z { y  |  ph }  =  { z } )
147, 13mpbir 221 . . 3  |-  E* y { y  |  ph }  =  { y }
151, 14mpgbir 1726 . 2  |-  Fun  { <. x ,  y >.  |  { y  |  ph }  =  { y } }
16 opabiota.1 . . 3  |-  F  =  { <. x ,  y
>.  |  { y  |  ph }  =  {
y } }
1716funeqi 5909 . 2  |-  ( Fun 
F  <->  Fun  { <. x ,  y >.  |  {
y  |  ph }  =  { y } }
)
1815, 17mpbir 221 1  |-  Fun  F
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483   E*wmo 2471   {cab 2608   {csn 4177   U.cuni 4436   {copab 4712   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-fun 5890
This theorem is referenced by:  opabiota  6261
  Copyright terms: Public domain W3C validator