![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabn0 | Structured version Visualization version GIF version |
Description: Nonempty ordered pair class abstraction. (Contributed by NM, 10-Oct-2007.) |
Ref | Expression |
---|---|
opabn0 | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥∃𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 3931 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ≠ ∅ ↔ ∃𝑧 𝑧 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
2 | elopab 4983 | . . . 4 ⊢ (𝑧 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
3 | 2 | exbii 1774 | . . 3 ⊢ (∃𝑧 𝑧 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑧∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
4 | exrot3 2045 | . . . 4 ⊢ (∃𝑧∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑧(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
5 | opex 4932 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
6 | 5 | isseti 3209 | . . . . . 6 ⊢ ∃𝑧 𝑧 = 〈𝑥, 𝑦〉 |
7 | 19.41v 1914 | . . . . . 6 ⊢ (∃𝑧(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (∃𝑧 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
8 | 6, 7 | mpbiran 953 | . . . . 5 ⊢ (∃𝑧(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜑) |
9 | 8 | 2exbii 1775 | . . . 4 ⊢ (∃𝑥∃𝑦∃𝑧(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) |
10 | 4, 9 | bitri 264 | . . 3 ⊢ (∃𝑧∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) |
11 | 3, 10 | bitri 264 | . 2 ⊢ (∃𝑧 𝑧 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦𝜑) |
12 | 1, 11 | bitri 264 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥∃𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ≠ wne 2794 ∅c0 3915 〈cop 4183 {copab 4712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 |
This theorem is referenced by: opab0 5007 csbopab 5008 dvdsrval 18645 thlle 20041 bcthlem5 23125 lgsquadlem3 25107 |
Copyright terms: Public domain | W3C validator |