MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfull Structured version   Visualization version   GIF version

Theorem isfull 16570
Description: Value of the set of full functors between two categories. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfull.b 𝐵 = (Base‘𝐶)
isfull.j 𝐽 = (Hom ‘𝐷)
Assertion
Ref Expression
isfull (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐽,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦

Proof of Theorem isfull
Dummy variables 𝑐 𝑑 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fullfunc 16566 . . 3 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
21ssbri 4697 . 2 (𝐹(𝐶 Full 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
3 df-br 4654 . . . . . . 7 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
4 funcrcl 16523 . . . . . . 7 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
53, 4sylbi 207 . . . . . 6 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
6 oveq12 6659 . . . . . . . . . 10 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑐 Func 𝑑) = (𝐶 Func 𝐷))
76breqd 4664 . . . . . . . . 9 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑓(𝑐 Func 𝑑)𝑔𝑓(𝐶 Func 𝐷)𝑔))
8 simpl 473 . . . . . . . . . . . 12 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑐 = 𝐶)
98fveq2d 6195 . . . . . . . . . . 11 ((𝑐 = 𝐶𝑑 = 𝐷) → (Base‘𝑐) = (Base‘𝐶))
10 isfull.b . . . . . . . . . . 11 𝐵 = (Base‘𝐶)
119, 10syl6eqr 2674 . . . . . . . . . 10 ((𝑐 = 𝐶𝑑 = 𝐷) → (Base‘𝑐) = 𝐵)
12 simpr 477 . . . . . . . . . . . . . . 15 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑑 = 𝐷)
1312fveq2d 6195 . . . . . . . . . . . . . 14 ((𝑐 = 𝐶𝑑 = 𝐷) → (Hom ‘𝑑) = (Hom ‘𝐷))
14 isfull.j . . . . . . . . . . . . . 14 𝐽 = (Hom ‘𝐷)
1513, 14syl6eqr 2674 . . . . . . . . . . . . 13 ((𝑐 = 𝐶𝑑 = 𝐷) → (Hom ‘𝑑) = 𝐽)
1615oveqd 6667 . . . . . . . . . . . 12 ((𝑐 = 𝐶𝑑 = 𝐷) → ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)))
1716eqeq2d 2632 . . . . . . . . . . 11 ((𝑐 = 𝐶𝑑 = 𝐷) → (ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)) ↔ ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦))))
1811, 17raleqbidv 3152 . . . . . . . . . 10 ((𝑐 = 𝐶𝑑 = 𝐷) → (∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)) ↔ ∀𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦))))
1911, 18raleqbidv 3152 . . . . . . . . 9 ((𝑐 = 𝐶𝑑 = 𝐷) → (∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦))))
207, 19anbi12d 747 . . . . . . . 8 ((𝑐 = 𝐶𝑑 = 𝐷) → ((𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦))) ↔ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))))
2120opabbidv 4716 . . . . . . 7 ((𝑐 = 𝐶𝑑 = 𝐷) → {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))} = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))})
22 df-full 16564 . . . . . . 7 Full = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))})
23 ovex 6678 . . . . . . . 8 (𝐶 Func 𝐷) ∈ V
24 simpl 473 . . . . . . . . . 10 ((𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦))) → 𝑓(𝐶 Func 𝐷)𝑔)
2524ssopab2i 5003 . . . . . . . . 9 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))} ⊆ {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝐶 Func 𝐷)𝑔}
26 opabss 4714 . . . . . . . . 9 {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝐶 Func 𝐷)𝑔} ⊆ (𝐶 Func 𝐷)
2725, 26sstri 3612 . . . . . . . 8 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))} ⊆ (𝐶 Func 𝐷)
2823, 27ssexi 4803 . . . . . . 7 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))} ∈ V
2921, 22, 28ovmpt2a 6791 . . . . . 6 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Full 𝐷) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))})
305, 29syl 17 . . . . 5 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐶 Full 𝐷) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))})
3130breqd 4664 . . . 4 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Full 𝐷)𝐺𝐹{⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))}𝐺))
32 relfunc 16522 . . . . . 6 Rel (𝐶 Func 𝐷)
33 brrelex12 5155 . . . . . 6 ((Rel (𝐶 Func 𝐷) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝐹 ∈ V ∧ 𝐺 ∈ V))
3432, 33mpan 706 . . . . 5 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
35 breq12 4658 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓(𝐶 Func 𝐷)𝑔𝐹(𝐶 Func 𝐷)𝐺))
36 simpr 477 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑔 = 𝐺)
3736oveqd 6667 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑥𝑔𝑦) = (𝑥𝐺𝑦))
3837rneqd 5353 . . . . . . . . 9 ((𝑓 = 𝐹𝑔 = 𝐺) → ran (𝑥𝑔𝑦) = ran (𝑥𝐺𝑦))
39 simpl 473 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑓 = 𝐹)
4039fveq1d 6193 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑥) = (𝐹𝑥))
4139fveq1d 6193 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑦) = (𝐹𝑦))
4240, 41oveq12d 6668 . . . . . . . . 9 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥)𝐽(𝑓𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)))
4338, 42eqeq12d 2637 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → (ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)) ↔ ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
44432ralbidv 2989 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → (∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
4535, 44anbi12d 747 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦))) ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦)))))
46 eqid 2622 . . . . . 6 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))} = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))}
4745, 46brabga 4989 . . . . 5 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹{⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))}𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦)))))
4834, 47syl 17 . . . 4 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹{⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))}𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦)))))
4931, 48bitrd 268 . . 3 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦)))))
5049bianabs 924 . 2 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
512, 50biadan2 674 1 (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cop 4183   class class class wbr 4653  {copab 4712  ran crn 5115  Rel wrel 5119  cfv 5888  (class class class)co 6650  Basecbs 15857  Hom chom 15952  Catccat 16325   Func cfunc 16514   Full cful 16562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-func 16518  df-full 16564
This theorem is referenced by:  isfull2  16571  fullpropd  16580  fulloppc  16582  fullres2c  16599
  Copyright terms: Public domain W3C validator