| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabss | Structured version Visualization version Unicode version | ||
| Description: The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| opabss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-opab 4713 |
. 2
| |
| 2 | df-br 4654 |
. . . . 5
| |
| 3 | eleq1 2689 |
. . . . . 6
| |
| 4 | 3 | biimpar 502 |
. . . . 5
|
| 5 | 2, 4 | sylan2b 492 |
. . . 4
|
| 6 | 5 | exlimivv 1860 |
. . 3
|
| 7 | 6 | abssi 3677 |
. 2
|
| 8 | 1, 7 | eqsstri 3635 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-in 3581 df-ss 3588 df-br 4654 df-opab 4713 |
| This theorem is referenced by: aceq3lem 8943 fullfunc 16566 fthfunc 16567 isfull 16570 isfth 16574 |
| Copyright terms: Public domain | W3C validator |