![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeq1i | Structured version Visualization version GIF version |
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
opeq1i | ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | opeq1 4402 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 〈cop 4183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 |
This theorem is referenced by: axi2m1 9980 s3tpop 13654 strlemor1OLD 15969 2strstr1 15986 2strop1 15988 grpbasex 15994 grpplusgx 15995 mat1dimelbas 20277 mat1dim0 20279 mat1dimid 20280 mat1dimscm 20281 mat1dimmul 20282 indistpsx 20814 setsiedg 25928 cusgrsize 26350 mapfzcons 37279 |
Copyright terms: Public domain | W3C validator |