Step | Hyp | Ref
| Expression |
1 | | cusgrsizeindb0.e |
. . . . 5
⊢ 𝐸 = (Edg‘𝐺) |
2 | | edgval 25941 |
. . . . 5
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) |
3 | 1, 2 | eqtri 2644 |
. . . 4
⊢ 𝐸 = ran (iEdg‘𝐺) |
4 | 3 | a1i 11 |
. . 3
⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → 𝐸 = ran (iEdg‘𝐺)) |
5 | 4 | fveq2d 6195 |
. 2
⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) →
(#‘𝐸) = (#‘ran
(iEdg‘𝐺))) |
6 | | cusgrsizeindb0.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
7 | 6 | opeq1i 4405 |
. . . 4
⊢
〈𝑉,
(iEdg‘𝐺)〉 =
〈(Vtx‘𝐺),
(iEdg‘𝐺)〉 |
8 | | cusgrop 26334 |
. . . 4
⊢ (𝐺 ∈ ComplUSGraph →
〈(Vtx‘𝐺),
(iEdg‘𝐺)〉 ∈
ComplUSGraph) |
9 | 7, 8 | syl5eqel 2705 |
. . 3
⊢ (𝐺 ∈ ComplUSGraph →
〈𝑉, (iEdg‘𝐺)〉 ∈
ComplUSGraph) |
10 | | fvex 6201 |
. . . 4
⊢
(iEdg‘𝐺)
∈ V |
11 | | fvex 6201 |
. . . . 5
⊢
(Edg‘〈𝑣,
𝑒〉) ∈
V |
12 | | rabexg 4812 |
. . . . . 6
⊢
((Edg‘〈𝑣,
𝑒〉) ∈ V →
{𝑐 ∈
(Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐} ∈ V) |
13 | 12 | resiexd 6480 |
. . . . 5
⊢
((Edg‘〈𝑣,
𝑒〉) ∈ V → (
I ↾ {𝑐 ∈
(Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐}) ∈ V) |
14 | 11, 13 | ax-mp 5 |
. . . 4
⊢ ( I
↾ {𝑐 ∈
(Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐}) ∈ V |
15 | | rneq 5351 |
. . . . . 6
⊢ (𝑒 = (iEdg‘𝐺) → ran 𝑒 = ran (iEdg‘𝐺)) |
16 | 15 | fveq2d 6195 |
. . . . 5
⊢ (𝑒 = (iEdg‘𝐺) → (#‘ran 𝑒) = (#‘ran (iEdg‘𝐺))) |
17 | | fveq2 6191 |
. . . . . 6
⊢ (𝑣 = 𝑉 → (#‘𝑣) = (#‘𝑉)) |
18 | 17 | oveq1d 6665 |
. . . . 5
⊢ (𝑣 = 𝑉 → ((#‘𝑣)C2) = ((#‘𝑉)C2)) |
19 | 16, 18 | eqeqan12rd 2640 |
. . . 4
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = (iEdg‘𝐺)) → ((#‘ran 𝑒) = ((#‘𝑣)C2) ↔ (#‘ran (iEdg‘𝐺)) = ((#‘𝑉)C2))) |
20 | | rneq 5351 |
. . . . . 6
⊢ (𝑒 = 𝑓 → ran 𝑒 = ran 𝑓) |
21 | 20 | fveq2d 6195 |
. . . . 5
⊢ (𝑒 = 𝑓 → (#‘ran 𝑒) = (#‘ran 𝑓)) |
22 | | fveq2 6191 |
. . . . . 6
⊢ (𝑣 = 𝑤 → (#‘𝑣) = (#‘𝑤)) |
23 | 22 | oveq1d 6665 |
. . . . 5
⊢ (𝑣 = 𝑤 → ((#‘𝑣)C2) = ((#‘𝑤)C2)) |
24 | 21, 23 | eqeqan12rd 2640 |
. . . 4
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → ((#‘ran 𝑒) = ((#‘𝑣)C2) ↔ (#‘ran 𝑓) = ((#‘𝑤)C2))) |
25 | | vex 3203 |
. . . . . . 7
⊢ 𝑣 ∈ V |
26 | | vex 3203 |
. . . . . . 7
⊢ 𝑒 ∈ V |
27 | 25, 26 | opvtxfvi 25889 |
. . . . . 6
⊢
(Vtx‘〈𝑣,
𝑒〉) = 𝑣 |
28 | 27 | eqcomi 2631 |
. . . . 5
⊢ 𝑣 = (Vtx‘〈𝑣, 𝑒〉) |
29 | | eqid 2622 |
. . . . 5
⊢
(Edg‘〈𝑣,
𝑒〉) =
(Edg‘〈𝑣, 𝑒〉) |
30 | | eqid 2622 |
. . . . 5
⊢ {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐} = {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐} |
31 | | eqid 2622 |
. . . . 5
⊢
〈(𝑣 ∖
{𝑛}), ( I ↾ {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐})〉 = 〈(𝑣 ∖ {𝑛}), ( I ↾ {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐})〉 |
32 | 28, 29, 30, 31 | cusgrres 26344 |
. . . 4
⊢
((〈𝑣, 𝑒〉 ∈ ComplUSGraph ∧
𝑛 ∈ 𝑣) → 〈(𝑣 ∖ {𝑛}), ( I ↾ {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐})〉 ∈
ComplUSGraph) |
33 | | rneq 5351 |
. . . . . . 7
⊢ (𝑓 = ( I ↾ {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐}) → ran 𝑓 = ran ( I ↾ {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐})) |
34 | 33 | fveq2d 6195 |
. . . . . 6
⊢ (𝑓 = ( I ↾ {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐}) → (#‘ran 𝑓) = (#‘ran ( I ↾ {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐}))) |
35 | 34 | adantl 482 |
. . . . 5
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐})) → (#‘ran 𝑓) = (#‘ran ( I ↾ {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐}))) |
36 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑤 = (𝑣 ∖ {𝑛}) → (#‘𝑤) = (#‘(𝑣 ∖ {𝑛}))) |
37 | 36 | adantr 481 |
. . . . . 6
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐})) → (#‘𝑤) = (#‘(𝑣 ∖ {𝑛}))) |
38 | 37 | oveq1d 6665 |
. . . . 5
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐})) → ((#‘𝑤)C2) = ((#‘(𝑣 ∖ {𝑛}))C2)) |
39 | 35, 38 | eqeq12d 2637 |
. . . 4
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐})) → ((#‘ran 𝑓) = ((#‘𝑤)C2) ↔ (#‘ran ( I ↾ {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐})) = ((#‘(𝑣 ∖ {𝑛}))C2))) |
40 | | edgopval 25944 |
. . . . . . . . 9
⊢ ((𝑣 ∈ V ∧ 𝑒 ∈ V) →
(Edg‘〈𝑣, 𝑒〉) = ran 𝑒) |
41 | 25, 26, 40 | mp2an 708 |
. . . . . . . 8
⊢
(Edg‘〈𝑣,
𝑒〉) = ran 𝑒 |
42 | 41 | a1i 11 |
. . . . . . 7
⊢
((〈𝑣, 𝑒〉 ∈ ComplUSGraph ∧
(#‘𝑣) = 0) →
(Edg‘〈𝑣, 𝑒〉) = ran 𝑒) |
43 | 42 | eqcomd 2628 |
. . . . . 6
⊢
((〈𝑣, 𝑒〉 ∈ ComplUSGraph ∧
(#‘𝑣) = 0) → ran
𝑒 = (Edg‘〈𝑣, 𝑒〉)) |
44 | 43 | fveq2d 6195 |
. . . . 5
⊢
((〈𝑣, 𝑒〉 ∈ ComplUSGraph ∧
(#‘𝑣) = 0) →
(#‘ran 𝑒) =
(#‘(Edg‘〈𝑣, 𝑒〉))) |
45 | | cusgrusgr 26315 |
. . . . . . 7
⊢
(〈𝑣, 𝑒〉 ∈ ComplUSGraph
→ 〈𝑣, 𝑒〉 ∈ USGraph
) |
46 | | usgruhgr 26078 |
. . . . . . 7
⊢
(〈𝑣, 𝑒〉 ∈ USGraph →
〈𝑣, 𝑒〉 ∈ UHGraph ) |
47 | 45, 46 | syl 17 |
. . . . . 6
⊢
(〈𝑣, 𝑒〉 ∈ ComplUSGraph
→ 〈𝑣, 𝑒〉 ∈ UHGraph
) |
48 | 28, 29 | cusgrsizeindb0 26345 |
. . . . . 6
⊢
((〈𝑣, 𝑒〉 ∈ UHGraph ∧
(#‘𝑣) = 0) →
(#‘(Edg‘〈𝑣, 𝑒〉)) = ((#‘𝑣)C2)) |
49 | 47, 48 | sylan 488 |
. . . . 5
⊢
((〈𝑣, 𝑒〉 ∈ ComplUSGraph ∧
(#‘𝑣) = 0) →
(#‘(Edg‘〈𝑣, 𝑒〉)) = ((#‘𝑣)C2)) |
50 | 44, 49 | eqtrd 2656 |
. . . 4
⊢
((〈𝑣, 𝑒〉 ∈ ComplUSGraph ∧
(#‘𝑣) = 0) →
(#‘ran 𝑒) =
((#‘𝑣)C2)) |
51 | | rnresi 5479 |
. . . . . . . . . 10
⊢ ran ( I
↾ {𝑐 ∈
(Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐}) = {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐} |
52 | 51 | fveq2i 6194 |
. . . . . . . . 9
⊢
(#‘ran ( I ↾ {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐})) = (#‘{𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐}) |
53 | 41 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝑦 + 1) ∈ ℕ0
∧ (〈𝑣, 𝑒〉 ∈ ComplUSGraph ∧
(#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) → (Edg‘〈𝑣, 𝑒〉) = ran 𝑒) |
54 | 53 | rabeqdv 3194 |
. . . . . . . . . 10
⊢ (((𝑦 + 1) ∈ ℕ0
∧ (〈𝑣, 𝑒〉 ∈ ComplUSGraph ∧
(#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) → {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐} = {𝑐 ∈ ran 𝑒 ∣ 𝑛 ∉ 𝑐}) |
55 | 54 | fveq2d 6195 |
. . . . . . . . 9
⊢ (((𝑦 + 1) ∈ ℕ0
∧ (〈𝑣, 𝑒〉 ∈ ComplUSGraph ∧
(#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) → (#‘{𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐}) = (#‘{𝑐 ∈ ran 𝑒 ∣ 𝑛 ∉ 𝑐})) |
56 | 52, 55 | syl5eq 2668 |
. . . . . . . 8
⊢ (((𝑦 + 1) ∈ ℕ0
∧ (〈𝑣, 𝑒〉 ∈ ComplUSGraph ∧
(#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) → (#‘ran ( I ↾ {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐})) = (#‘{𝑐 ∈ ran 𝑒 ∣ 𝑛 ∉ 𝑐})) |
57 | 56 | eqeq1d 2624 |
. . . . . . 7
⊢ (((𝑦 + 1) ∈ ℕ0
∧ (〈𝑣, 𝑒〉 ∈ ComplUSGraph ∧
(#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) → ((#‘ran ( I ↾ {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐})) = ((#‘(𝑣 ∖ {𝑛}))C2) ↔ (#‘{𝑐 ∈ ran 𝑒 ∣ 𝑛 ∉ 𝑐}) = ((#‘(𝑣 ∖ {𝑛}))C2))) |
58 | 57 | biimpd 219 |
. . . . . 6
⊢ (((𝑦 + 1) ∈ ℕ0
∧ (〈𝑣, 𝑒〉 ∈ ComplUSGraph ∧
(#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) → ((#‘ran ( I ↾ {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐})) = ((#‘(𝑣 ∖ {𝑛}))C2) → (#‘{𝑐 ∈ ran 𝑒 ∣ 𝑛 ∉ 𝑐}) = ((#‘(𝑣 ∖ {𝑛}))C2))) |
59 | 58 | imdistani 726 |
. . . . 5
⊢ ((((𝑦 + 1) ∈ ℕ0
∧ (〈𝑣, 𝑒〉 ∈ ComplUSGraph ∧
(#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ (#‘ran ( I ↾ {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐})) = ((#‘(𝑣 ∖ {𝑛}))C2)) → (((𝑦 + 1) ∈ ℕ0 ∧
(〈𝑣, 𝑒〉 ∈ ComplUSGraph ∧
(#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ (#‘{𝑐 ∈ ran 𝑒 ∣ 𝑛 ∉ 𝑐}) = ((#‘(𝑣 ∖ {𝑛}))C2))) |
60 | 41 | eqcomi 2631 |
. . . . . . 7
⊢ ran 𝑒 = (Edg‘〈𝑣, 𝑒〉) |
61 | | eqid 2622 |
. . . . . . 7
⊢ {𝑐 ∈ ran 𝑒 ∣ 𝑛 ∉ 𝑐} = {𝑐 ∈ ran 𝑒 ∣ 𝑛 ∉ 𝑐} |
62 | 28, 60, 61 | cusgrsize2inds 26349 |
. . . . . 6
⊢ ((𝑦 + 1) ∈ ℕ0
→ ((〈𝑣, 𝑒〉 ∈ ComplUSGraph ∧
(#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣) → ((#‘{𝑐 ∈ ran 𝑒 ∣ 𝑛 ∉ 𝑐}) = ((#‘(𝑣 ∖ {𝑛}))C2) → (#‘ran 𝑒) = ((#‘𝑣)C2)))) |
63 | 62 | imp31 448 |
. . . . 5
⊢ ((((𝑦 + 1) ∈ ℕ0
∧ (〈𝑣, 𝑒〉 ∈ ComplUSGraph ∧
(#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ (#‘{𝑐 ∈ ran 𝑒 ∣ 𝑛 ∉ 𝑐}) = ((#‘(𝑣 ∖ {𝑛}))C2)) → (#‘ran 𝑒) = ((#‘𝑣)C2)) |
64 | 59, 63 | syl 17 |
. . . 4
⊢ ((((𝑦 + 1) ∈ ℕ0
∧ (〈𝑣, 𝑒〉 ∈ ComplUSGraph ∧
(#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ (#‘ran ( I ↾ {𝑐 ∈ (Edg‘〈𝑣, 𝑒〉) ∣ 𝑛 ∉ 𝑐})) = ((#‘(𝑣 ∖ {𝑛}))C2)) → (#‘ran 𝑒) = ((#‘𝑣)C2)) |
65 | 10, 14, 19, 24, 32, 39, 50, 64 | opfi1ind 13284 |
. . 3
⊢
((〈𝑉,
(iEdg‘𝐺)〉 ∈
ComplUSGraph ∧ 𝑉 ∈
Fin) → (#‘ran (iEdg‘𝐺)) = ((#‘𝑉)C2)) |
66 | 9, 65 | sylan 488 |
. 2
⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (#‘ran
(iEdg‘𝐺)) =
((#‘𝑉)C2)) |
67 | 5, 66 | eqtrd 2656 |
1
⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) →
(#‘𝐸) =
((#‘𝑉)C2)) |