MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1dimscm Structured version   Visualization version   GIF version

Theorem mat1dimscm 20281
Description: The scalar multiplication in the algebra of matrices with dimension 1. (Contributed by AV, 16-Aug-2019.)
Hypotheses
Ref Expression
mat1dim.a 𝐴 = ({𝐸} Mat 𝑅)
mat1dim.b 𝐵 = (Base‘𝑅)
mat1dim.o 𝑂 = ⟨𝐸, 𝐸
Assertion
Ref Expression
mat1dimscm (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( ·𝑠𝐴){⟨𝑂, 𝑌⟩}) = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})

Proof of Theorem mat1dimscm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mat1dim.o . . . . . . . . . . 11 𝑂 = ⟨𝐸, 𝐸
2 opex 4932 . . . . . . . . . . 11 𝐸, 𝐸⟩ ∈ V
31, 2eqeltri 2697 . . . . . . . . . 10 𝑂 ∈ V
43a1i 11 . . . . . . . . 9 (𝑌𝐵𝑂 ∈ V)
54anim2i 593 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → (𝑋𝐵𝑂 ∈ V))
65ancomd 467 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (𝑂 ∈ V ∧ 𝑋𝐵))
7 fnsng 5938 . . . . . . 7 ((𝑂 ∈ V ∧ 𝑋𝐵) → {⟨𝑂, 𝑋⟩} Fn {𝑂})
86, 7syl 17 . . . . . 6 ((𝑋𝐵𝑌𝐵) → {⟨𝑂, 𝑋⟩} Fn {𝑂})
98adantl 482 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑋⟩} Fn {𝑂})
10 xpsng 6406 . . . . . . . 8 ((𝑂 ∈ V ∧ 𝑋𝐵) → ({𝑂} × {𝑋}) = {⟨𝑂, 𝑋⟩})
116, 10syl 17 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → ({𝑂} × {𝑋}) = {⟨𝑂, 𝑋⟩})
1211adantl 482 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝑂} × {𝑋}) = {⟨𝑂, 𝑋⟩})
1312fneq1d 5981 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝑂} × {𝑋}) Fn {𝑂} ↔ {⟨𝑂, 𝑋⟩} Fn {𝑂}))
149, 13mpbird 247 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝑂} × {𝑋}) Fn {𝑂})
15 xpsng 6406 . . . . . . . . 9 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
161sneqi 4188 . . . . . . . . 9 {𝑂} = {⟨𝐸, 𝐸⟩}
1715, 16syl6eqr 2674 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {𝑂})
1817anidms 677 . . . . . . 7 (𝐸𝑉 → ({𝐸} × {𝐸}) = {𝑂})
1918ad2antlr 763 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝐸} × {𝐸}) = {𝑂})
2019xpeq1d 5138 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) = ({𝑂} × {𝑋}))
2120fneq1d 5981 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋}) Fn {𝑂} ↔ ({𝑂} × {𝑋}) Fn {𝑂}))
2214, 21mpbird 247 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) Fn {𝑂})
233a1i 11 . . . . 5 (𝑋𝐵𝑂 ∈ V)
24 fnsng 5938 . . . . 5 ((𝑂 ∈ V ∧ 𝑌𝐵) → {⟨𝑂, 𝑌⟩} Fn {𝑂})
2523, 24sylan 488 . . . 4 ((𝑋𝐵𝑌𝐵) → {⟨𝑂, 𝑌⟩} Fn {𝑂})
2625adantl 482 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑌⟩} Fn {𝑂})
27 snex 4908 . . . 4 {𝑂} ∈ V
2827a1i 11 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {𝑂} ∈ V)
29 inidm 3822 . . 3 ({𝑂} ∩ {𝑂}) = {𝑂}
30 elsni 4194 . . . . 5 (𝑥 ∈ {𝑂} → 𝑥 = 𝑂)
31 fveq2 6191 . . . . . . 7 (𝑥 = 𝑂 → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = ((({𝐸} × {𝐸}) × {𝑋})‘𝑂))
3215anidms 677 . . . . . . . . . . . 12 (𝐸𝑉 → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
3332ad2antlr 763 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
3433xpeq1d 5138 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) = ({⟨𝐸, 𝐸⟩} × {𝑋}))
352a1i 11 . . . . . . . . . . . . . 14 (𝑌𝐵 → ⟨𝐸, 𝐸⟩ ∈ V)
3635anim2i 593 . . . . . . . . . . . . 13 ((𝑋𝐵𝑌𝐵) → (𝑋𝐵 ∧ ⟨𝐸, 𝐸⟩ ∈ V))
3736ancomd 467 . . . . . . . . . . . 12 ((𝑋𝐵𝑌𝐵) → (⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝐵))
38 xpsng 6406 . . . . . . . . . . . . 13 ((⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝐵) → ({⟨𝐸, 𝐸⟩} × {𝑋}) = {⟨⟨𝐸, 𝐸⟩, 𝑋⟩})
391eqcomi 2631 . . . . . . . . . . . . . . 15 𝐸, 𝐸⟩ = 𝑂
4039opeq1i 4405 . . . . . . . . . . . . . 14 ⟨⟨𝐸, 𝐸⟩, 𝑋⟩ = ⟨𝑂, 𝑋
4140sneqi 4188 . . . . . . . . . . . . 13 {⟨⟨𝐸, 𝐸⟩, 𝑋⟩} = {⟨𝑂, 𝑋⟩}
4238, 41syl6eq 2672 . . . . . . . . . . . 12 ((⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝐵) → ({⟨𝐸, 𝐸⟩} × {𝑋}) = {⟨𝑂, 𝑋⟩})
4337, 42syl 17 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵) → ({⟨𝐸, 𝐸⟩} × {𝑋}) = {⟨𝑂, 𝑋⟩})
4443adantl 482 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝐸, 𝐸⟩} × {𝑋}) = {⟨𝑂, 𝑋⟩})
4534, 44eqtrd 2656 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (({𝐸} × {𝐸}) × {𝑋}) = {⟨𝑂, 𝑋⟩})
4645fveq1d 6193 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑂) = ({⟨𝑂, 𝑋⟩}‘𝑂))
47 fvsng 6447 . . . . . . . . . 10 ((𝑂 ∈ V ∧ 𝑋𝐵) → ({⟨𝑂, 𝑋⟩}‘𝑂) = 𝑋)
486, 47syl 17 . . . . . . . . 9 ((𝑋𝐵𝑌𝐵) → ({⟨𝑂, 𝑋⟩}‘𝑂) = 𝑋)
4948adantl 482 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑋⟩}‘𝑂) = 𝑋)
5046, 49eqtrd 2656 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑂) = 𝑋)
5131, 50sylan9eq 2676 . . . . . 6 ((𝑥 = 𝑂 ∧ ((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵))) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋)
5251ex 450 . . . . 5 (𝑥 = 𝑂 → (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋))
5330, 52syl 17 . . . 4 (𝑥 ∈ {𝑂} → (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋))
5453impcom 446 . . 3 ((((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑥 ∈ {𝑂}) → ((({𝐸} × {𝐸}) × {𝑋})‘𝑥) = 𝑋)
55 fveq2 6191 . . . . . . 7 (𝑥 = 𝑂 → ({⟨𝑂, 𝑌⟩}‘𝑥) = ({⟨𝑂, 𝑌⟩}‘𝑂))
56 fvsng 6447 . . . . . . . . 9 ((𝑂 ∈ V ∧ 𝑌𝐵) → ({⟨𝑂, 𝑌⟩}‘𝑂) = 𝑌)
5723, 56sylan 488 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → ({⟨𝑂, 𝑌⟩}‘𝑂) = 𝑌)
5857adantl 482 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑌⟩}‘𝑂) = 𝑌)
5955, 58sylan9eq 2676 . . . . . 6 ((𝑥 = 𝑂 ∧ ((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵))) → ({⟨𝑂, 𝑌⟩}‘𝑥) = 𝑌)
6059ex 450 . . . . 5 (𝑥 = 𝑂 → (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑌⟩}‘𝑥) = 𝑌))
6130, 60syl 17 . . . 4 (𝑥 ∈ {𝑂} → (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ({⟨𝑂, 𝑌⟩}‘𝑥) = 𝑌))
6261impcom 446 . . 3 ((((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑥 ∈ {𝑂}) → ({⟨𝑂, 𝑌⟩}‘𝑥) = 𝑌)
6322, 26, 28, 28, 29, 54, 62offval 6904 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((({𝐸} × {𝐸}) × {𝑋}) ∘𝑓 (.r𝑅){⟨𝑂, 𝑌⟩}) = (𝑥 ∈ {𝑂} ↦ (𝑋(.r𝑅)𝑌)))
64 simprl 794 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
65 simpr 477 . . . . . 6 ((𝑋𝐵𝑌𝐵) → 𝑌𝐵)
6665anim2i 593 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → ((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑌𝐵))
67 df-3an 1039 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑌𝐵) ↔ ((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑌𝐵))
6866, 67sylibr 224 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑅 ∈ Ring ∧ 𝐸𝑉𝑌𝐵))
69 mat1dim.a . . . . 5 𝐴 = ({𝐸} Mat 𝑅)
70 mat1dim.b . . . . 5 𝐵 = (Base‘𝑅)
7169, 70, 1mat1dimbas 20278 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑌𝐵) → {⟨𝑂, 𝑌⟩} ∈ (Base‘𝐴))
7268, 71syl 17 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, 𝑌⟩} ∈ (Base‘𝐴))
73 eqid 2622 . . . 4 (Base‘𝐴) = (Base‘𝐴)
74 eqid 2622 . . . 4 ( ·𝑠𝐴) = ( ·𝑠𝐴)
75 eqid 2622 . . . 4 (.r𝑅) = (.r𝑅)
76 eqid 2622 . . . 4 ({𝐸} × {𝐸}) = ({𝐸} × {𝐸})
7769, 73, 70, 74, 75, 76matvsca2 20234 . . 3 ((𝑋𝐵 ∧ {⟨𝑂, 𝑌⟩} ∈ (Base‘𝐴)) → (𝑋( ·𝑠𝐴){⟨𝑂, 𝑌⟩}) = ((({𝐸} × {𝐸}) × {𝑋}) ∘𝑓 (.r𝑅){⟨𝑂, 𝑌⟩}))
7864, 72, 77syl2anc 693 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( ·𝑠𝐴){⟨𝑂, 𝑌⟩}) = ((({𝐸} × {𝐸}) × {𝑋}) ∘𝑓 (.r𝑅){⟨𝑂, 𝑌⟩}))
79 3anass 1042 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ↔ (𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵)))
8079biimpri 218 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵)) → (𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵))
8180adantlr 751 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵))
8270, 75ringcl 18561 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋(.r𝑅)𝑌) ∈ 𝐵)
8381, 82syl 17 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑅)𝑌) ∈ 𝐵)
84 fmptsn 6433 . . 3 ((𝑂 ∈ V ∧ (𝑋(.r𝑅)𝑌) ∈ 𝐵) → {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩} = (𝑥 ∈ {𝑂} ↦ (𝑋(.r𝑅)𝑌)))
853, 83, 84sylancr 695 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩} = (𝑥 ∈ {𝑂} ↦ (𝑋(.r𝑅)𝑌)))
8663, 78, 853eqtr4d 2666 1 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( ·𝑠𝐴){⟨𝑂, 𝑌⟩}) = {⟨𝑂, (𝑋(.r𝑅)𝑌)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177  cop 4183  cmpt 4729   × cxp 5112   Fn wfn 5883  cfv 5888  (class class class)co 6650  𝑓 cof 6895  Basecbs 15857  .rcmulr 15942   ·𝑠 cvsca 15945  Ringcrg 18547   Mat cmat 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mgp 18490  df-ring 18549  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091  df-mat 20214
This theorem is referenced by:  mat1scmat  20345
  Copyright terms: Public domain W3C validator