![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opfusgr | Structured version Visualization version GIF version |
Description: A finite simple graph represented as ordered pair. (Contributed by AV, 23-Oct-2020.) |
Ref | Expression |
---|---|
opfusgr | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (〈𝑉, 𝐸〉 ∈ FinUSGraph ↔ (〈𝑉, 𝐸〉 ∈ USGraph ∧ 𝑉 ∈ Fin))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . 3 ⊢ (Vtx‘〈𝑉, 𝐸〉) = (Vtx‘〈𝑉, 𝐸〉) | |
2 | 1 | isfusgr 26210 | . 2 ⊢ (〈𝑉, 𝐸〉 ∈ FinUSGraph ↔ (〈𝑉, 𝐸〉 ∈ USGraph ∧ (Vtx‘〈𝑉, 𝐸〉) ∈ Fin)) |
3 | opvtxfv 25884 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
4 | 3 | eleq1d 2686 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ((Vtx‘〈𝑉, 𝐸〉) ∈ Fin ↔ 𝑉 ∈ Fin)) |
5 | 4 | anbi2d 740 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ((〈𝑉, 𝐸〉 ∈ USGraph ∧ (Vtx‘〈𝑉, 𝐸〉) ∈ Fin) ↔ (〈𝑉, 𝐸〉 ∈ USGraph ∧ 𝑉 ∈ Fin))) |
6 | 2, 5 | syl5bb 272 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (〈𝑉, 𝐸〉 ∈ FinUSGraph ↔ (〈𝑉, 𝐸〉 ∈ USGraph ∧ 𝑉 ∈ Fin))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∈ wcel 1990 〈cop 4183 ‘cfv 5888 Fincfn 7955 Vtxcvtx 25874 USGraph cusgr 26044 FinUSGraph cfusgr 26208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-1st 7168 df-vtx 25876 df-fusgr 26209 |
This theorem is referenced by: fusgrfis 26222 |
Copyright terms: Public domain | W3C validator |