MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrfis Structured version   Visualization version   GIF version

Theorem fusgrfis 26222
Description: A finite simple graph is of finite size, i.e. has a finite number of edges. (Contributed by Alexander van der Vekens, 6-Jan-2018.) (Revised by AV, 8-Nov-2020.)
Assertion
Ref Expression
fusgrfis (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)

Proof of Theorem fusgrfis
Dummy variables 𝑒 𝑓 𝑛 𝑝 𝑞 𝑣 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
21isfusgr 26210 . 2 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin))
3 usgrop 26058 . . . 4 (𝐺 ∈ USGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ USGraph )
4 fvex 6201 . . . . 5 (iEdg‘𝐺) ∈ V
5 mptresid 5456 . . . . . 6 (𝑞 ∈ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝} ↦ 𝑞) = ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝})
6 fvex 6201 . . . . . . 7 (Edg‘⟨𝑣, 𝑒⟩) ∈ V
76mptrabex 6488 . . . . . 6 (𝑞 ∈ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝} ↦ 𝑞) ∈ V
85, 7eqeltrri 2698 . . . . 5 ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ V
9 eleq1 2689 . . . . . 6 (𝑒 = (iEdg‘𝐺) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
109adantl 482 . . . . 5 ((𝑣 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
11 eleq1 2689 . . . . . 6 (𝑒 = 𝑓 → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin))
1211adantl 482 . . . . 5 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin))
13 vex 3203 . . . . . . . 8 𝑣 ∈ V
14 vex 3203 . . . . . . . 8 𝑒 ∈ V
1513, 14opvtxfvi 25889 . . . . . . 7 (Vtx‘⟨𝑣, 𝑒⟩) = 𝑣
1615eqcomi 2631 . . . . . 6 𝑣 = (Vtx‘⟨𝑣, 𝑒⟩)
17 eqid 2622 . . . . . 6 (Edg‘⟨𝑣, 𝑒⟩) = (Edg‘⟨𝑣, 𝑒⟩)
18 eqid 2622 . . . . . 6 {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝} = {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}
19 eqid 2622 . . . . . 6 ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝})⟩ = ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝})⟩
2016, 17, 18, 19usgrres1 26207 . . . . 5 ((⟨𝑣, 𝑒⟩ ∈ USGraph ∧ 𝑛𝑣) → ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝})⟩ ∈ USGraph )
21 eleq1 2689 . . . . . 6 (𝑓 = ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) → (𝑓 ∈ Fin ↔ ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin))
2221adantl 482 . . . . 5 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝})) → (𝑓 ∈ Fin ↔ ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin))
2313, 14pm3.2i 471 . . . . . 6 (𝑣 ∈ V ∧ 𝑒 ∈ V)
24 fusgrfisbase 26220 . . . . . 6 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (#‘𝑣) = 0) → 𝑒 ∈ Fin)
2523, 24mp3an1 1411 . . . . 5 ((⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (#‘𝑣) = 0) → 𝑒 ∈ Fin)
26 simpl 473 . . . . . . . . 9 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → (𝑣 ∈ V ∧ 𝑒 ∈ V))
27 simprr1 1109 . . . . . . . . . 10 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → ⟨𝑣, 𝑒⟩ ∈ USGraph )
28 eleq1 2689 . . . . . . . . . . . . . 14 ((#‘𝑣) = (𝑦 + 1) → ((#‘𝑣) ∈ ℕ0 ↔ (𝑦 + 1) ∈ ℕ0))
29 hashclb 13149 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ V → (𝑣 ∈ Fin ↔ (#‘𝑣) ∈ ℕ0))
3029biimprd 238 . . . . . . . . . . . . . . . 16 (𝑣 ∈ V → ((#‘𝑣) ∈ ℕ0𝑣 ∈ Fin))
3130adantr 481 . . . . . . . . . . . . . . 15 ((𝑣 ∈ V ∧ 𝑒 ∈ V) → ((#‘𝑣) ∈ ℕ0𝑣 ∈ Fin))
3231com12 32 . . . . . . . . . . . . . 14 ((#‘𝑣) ∈ ℕ0 → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin))
3328, 32syl6bir 244 . . . . . . . . . . . . 13 ((#‘𝑣) = (𝑦 + 1) → ((𝑦 + 1) ∈ ℕ0 → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin)))
34333ad2ant2 1083 . . . . . . . . . . . 12 ((⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣) → ((𝑦 + 1) ∈ ℕ0 → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin)))
3534impcom 446 . . . . . . . . . . 11 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → ((𝑣 ∈ V ∧ 𝑒 ∈ V) → 𝑣 ∈ Fin))
3635impcom 446 . . . . . . . . . 10 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → 𝑣 ∈ Fin)
37 opfusgr 26215 . . . . . . . . . . 11 ((𝑣 ∈ V ∧ 𝑒 ∈ V) → (⟨𝑣, 𝑒⟩ ∈ FinUSGraph ↔ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ 𝑣 ∈ Fin)))
3837adantr 481 . . . . . . . . . 10 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → (⟨𝑣, 𝑒⟩ ∈ FinUSGraph ↔ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ 𝑣 ∈ Fin)))
3927, 36, 38mpbir2and 957 . . . . . . . . 9 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → ⟨𝑣, 𝑒⟩ ∈ FinUSGraph )
40 simprr3 1111 . . . . . . . . 9 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → 𝑛𝑣)
4126, 39, 403jca 1242 . . . . . . . 8 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))) → ((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ⟨𝑣, 𝑒⟩ ∈ FinUSGraph ∧ 𝑛𝑣))
4223, 41mpan 706 . . . . . . 7 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → ((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ⟨𝑣, 𝑒⟩ ∈ FinUSGraph ∧ 𝑛𝑣))
43 fusgrfisstep 26221 . . . . . . 7 (((𝑣 ∈ V ∧ 𝑒 ∈ V) ∧ ⟨𝑣, 𝑒⟩ ∈ FinUSGraph ∧ 𝑛𝑣) → (( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin → 𝑒 ∈ Fin))
4442, 43syl 17 . . . . . 6 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → (( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin → 𝑒 ∈ Fin))
4544imp 445 . . . . 5 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ ( I ↾ {𝑝 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑝}) ∈ Fin) → 𝑒 ∈ Fin)
464, 8, 10, 12, 20, 22, 25, 45opfi1ind 13284 . . . 4 ((⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin) → (iEdg‘𝐺) ∈ Fin)
473, 46sylan 488 . . 3 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin) → (iEdg‘𝐺) ∈ Fin)
48 eqid 2622 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
49 eqid 2622 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
5048, 49usgredgffibi 26216 . . . 4 (𝐺 ∈ USGraph → ((Edg‘𝐺) ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
5150adantr 481 . . 3 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin) → ((Edg‘𝐺) ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
5247, 51mpbird 247 . 2 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin) → (Edg‘𝐺) ∈ Fin)
532, 52sylbi 207 1 (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wnel 2897  {crab 2916  Vcvv 3200  cdif 3571  {csn 4177  cop 4183  cmpt 4729   I cid 5023  cres 5116  cfv 5888  (class class class)co 6650  Fincfn 7955  0cc0 9936  1c1 9937   + caddc 9939  0cn0 11292  #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   USGraph cusgr 26044   FinUSGraph cfusgr 26208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-fusgr 26209
This theorem is referenced by:  fusgrfupgrfs  26223  nbfiusgrfi  26277  cusgrsizeindslem  26347  cusgrsizeinds  26348  sizusglecusglem2  26358  vtxdgfusgrf  26393  numclwwlk1  27231
  Copyright terms: Public domain W3C validator