![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppnid | Structured version Visualization version GIF version |
Description: The "opposite to a line" relation is irreflexive. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
Ref | Expression |
---|---|
hpg.p | ⊢ 𝑃 = (Base‘𝐺) |
hpg.d | ⊢ − = (dist‘𝐺) |
hpg.i | ⊢ 𝐼 = (Itv‘𝐺) |
hpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
opphl.l | ⊢ 𝐿 = (LineG‘𝐺) |
opphl.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
opphl.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
oppnid.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
Ref | Expression |
---|---|
oppnid | ⊢ (𝜑 → ¬ 𝐴𝑂𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hpg.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
2 | hpg.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
3 | hpg.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | opphl.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad3antrrr 766 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐺 ∈ TarskiG) |
6 | oppnid.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | ad3antrrr 766 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐴 ∈ 𝑃) |
8 | opphl.l | . . . . . 6 ⊢ 𝐿 = (LineG‘𝐺) | |
9 | opphl.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
10 | 9 | ad3antrrr 766 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐷 ∈ ran 𝐿) |
11 | simplr 792 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝑡 ∈ 𝐷) | |
12 | 1, 8, 3, 5, 10, 11 | tglnpt 25444 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝑡 ∈ 𝑃) |
13 | simpr 477 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝑡 ∈ (𝐴𝐼𝐴)) | |
14 | 1, 2, 3, 5, 7, 12, 13 | axtgbtwnid 25365 | . . . 4 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐴 = 𝑡) |
15 | 14, 11 | eqeltrd 2701 | . . 3 ⊢ ((((𝜑 ∧ 𝐴𝑂𝐴) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐴 ∈ 𝐷) |
16 | hpg.o | . . . . 5 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
17 | 1, 2, 3, 16, 6, 6 | islnopp 25631 | . . . 4 ⊢ (𝜑 → (𝐴𝑂𝐴 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐴 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐴)))) |
18 | 17 | simplbda 654 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑂𝐴) → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐴)) |
19 | 15, 18 | r19.29a 3078 | . 2 ⊢ ((𝜑 ∧ 𝐴𝑂𝐴) → 𝐴 ∈ 𝐷) |
20 | 17 | simprbda 653 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑂𝐴) → (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐴 ∈ 𝐷)) |
21 | 20 | simpld 475 | . 2 ⊢ ((𝜑 ∧ 𝐴𝑂𝐴) → ¬ 𝐴 ∈ 𝐷) |
22 | 19, 21 | pm2.65da 600 | 1 ⊢ (𝜑 → ¬ 𝐴𝑂𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 ∖ cdif 3571 class class class wbr 4653 {copab 4712 ran crn 5115 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 distcds 15950 TarskiGcstrkg 25329 Itvcitv 25335 LineGclng 25336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-cnv 5122 df-dm 5124 df-rn 5125 df-iota 5851 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-trkgb 25348 df-trkg 25352 |
This theorem is referenced by: lnoppnhpg 25656 |
Copyright terms: Public domain | W3C validator |