Proof of Theorem opphllem1
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 477 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) |
| 2 | | simplr 792 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝐷) |
| 3 | 1, 2 | eqeltrd 2701 |
. . . . 5
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝐷) |
| 4 | | hpg.p |
. . . . . . 7
⊢ 𝑃 = (Base‘𝐺) |
| 5 | | hpg.i |
. . . . . . 7
⊢ 𝐼 = (Itv‘𝐺) |
| 6 | | opphl.l |
. . . . . . 7
⊢ 𝐿 = (LineG‘𝐺) |
| 7 | | opphl.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 8 | 7 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐺 ∈ TarskiG) |
| 9 | | opphllem1.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| 10 | 9 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑃) |
| 11 | | opphl.d |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| 12 | | opphllem1.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ 𝐷) |
| 13 | 4, 6, 5, 7, 11, 12 | tglnpt 25444 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ 𝑃) |
| 14 | 13 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝑅 ∈ 𝑃) |
| 15 | | opphllem1.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| 16 | 15 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝑃) |
| 17 | | opphllem1.y |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ≠ 𝑅) |
| 18 | 17 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐵 ≠ 𝑅) |
| 19 | 18 | necomd 2849 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝑅 ≠ 𝐵) |
| 20 | | opphllem1.z |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ (𝑅𝐼𝐴)) |
| 21 | 20 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ (𝑅𝐼𝐴)) |
| 22 | 4, 5, 6, 8, 14, 10, 16, 19, 21 | btwnlng3 25516 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ (𝑅𝐿𝐵)) |
| 23 | 4, 5, 6, 8, 10, 14, 16, 18, 22 | lncom 25517 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ (𝐵𝐿𝑅)) |
| 24 | 11 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐷 ∈ ran 𝐿) |
| 25 | | simplr 792 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝐷) |
| 26 | 12 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝑅 ∈ 𝐷) |
| 27 | 4, 5, 6, 8, 10, 14, 18, 18, 24, 25, 26 | tglinethru 25531 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐷 = (𝐵𝐿𝑅)) |
| 28 | 23, 27 | eleqtrrd 2704 |
. . . . 5
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝐷) |
| 29 | 3, 28 | pm2.61dane 2881 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ 𝐷) → 𝐴 ∈ 𝐷) |
| 30 | | hpg.d |
. . . . . 6
⊢ − =
(dist‘𝐺) |
| 31 | | hpg.o |
. . . . . 6
⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
| 32 | | opphllem1.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| 33 | | opphllem1.o |
. . . . . 6
⊢ (𝜑 → 𝐴𝑂𝐶) |
| 34 | 4, 30, 5, 31, 6, 11, 7, 15, 32, 33 | oppne1 25633 |
. . . . 5
⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) |
| 35 | 34 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ 𝐷) → ¬ 𝐴 ∈ 𝐷) |
| 36 | 29, 35 | pm2.65da 600 |
. . 3
⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) |
| 37 | 4, 30, 5, 31, 6, 11, 7, 15, 32, 33 | oppne2 25634 |
. . 3
⊢ (𝜑 → ¬ 𝐶 ∈ 𝐷) |
| 38 | | opphllem1.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ 𝐷) |
| 39 | 4, 6, 5, 7, 11, 38 | tglnpt 25444 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ 𝑃) |
| 40 | | eqid 2622 |
. . . . . . 7
⊢
(pInvG‘𝐺) =
(pInvG‘𝐺) |
| 41 | | opphllem1.s |
. . . . . . 7
⊢ 𝑆 = ((pInvG‘𝐺)‘𝑀) |
| 42 | 4, 30, 5, 6, 40, 7,
39, 41, 15 | mirbtwn 25553 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ((𝑆‘𝐴)𝐼𝐴)) |
| 43 | | opphllem1.n |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 = (𝑆‘𝐶)) |
| 44 | 43 | eqcomd 2628 |
. . . . . . . 8
⊢ (𝜑 → (𝑆‘𝐶) = 𝐴) |
| 45 | 4, 30, 5, 6, 40, 7,
39, 41, 32, 44 | mircom 25558 |
. . . . . . 7
⊢ (𝜑 → (𝑆‘𝐴) = 𝐶) |
| 46 | 45 | oveq1d 6665 |
. . . . . 6
⊢ (𝜑 → ((𝑆‘𝐴)𝐼𝐴) = (𝐶𝐼𝐴)) |
| 47 | 42, 46 | eleqtrd 2703 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ (𝐶𝐼𝐴)) |
| 48 | 4, 30, 5, 7, 13, 32, 15, 9, 39, 20, 47 | axtgpasch 25366 |
. . . 4
⊢ (𝜑 → ∃𝑡 ∈ 𝑃 (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅))) |
| 49 | 7 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝐺 ∈ TarskiG) |
| 50 | 13 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑅 ∈ 𝑃) |
| 51 | | simplrl 800 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡 ∈ 𝑃) |
| 52 | | simplrr 801 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅))) |
| 53 | 52 | simprd 479 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡 ∈ (𝑀𝐼𝑅)) |
| 54 | | simpr 477 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑀 = 𝑅) |
| 55 | 54 | oveq1d 6665 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → (𝑀𝐼𝑅) = (𝑅𝐼𝑅)) |
| 56 | 53, 55 | eleqtrd 2703 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡 ∈ (𝑅𝐼𝑅)) |
| 57 | 4, 30, 5, 49, 50, 51, 56 | axtgbtwnid 25365 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑅 = 𝑡) |
| 58 | 12 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑅 ∈ 𝐷) |
| 59 | 57, 58 | eqeltrrd 2702 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡 ∈ 𝐷) |
| 60 | 7 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑀 ≠ 𝑅) → 𝐺 ∈ TarskiG) |
| 61 | 60 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 ≠ 𝑅) → 𝐺 ∈ TarskiG) |
| 62 | 39 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑀 ≠ 𝑅) → 𝑀 ∈ 𝑃) |
| 63 | 62 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 ≠ 𝑅) → 𝑀 ∈ 𝑃) |
| 64 | 13 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑀 ≠ 𝑅) → 𝑅 ∈ 𝑃) |
| 65 | 64 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 ≠ 𝑅) → 𝑅 ∈ 𝑃) |
| 66 | | simplrl 800 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 ≠ 𝑅) → 𝑡 ∈ 𝑃) |
| 67 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 ≠ 𝑅) → 𝑀 ≠ 𝑅) |
| 68 | | simplrr 801 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 ≠ 𝑅) → (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅))) |
| 69 | 68 | simprd 479 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 ≠ 𝑅) → 𝑡 ∈ (𝑀𝐼𝑅)) |
| 70 | 4, 5, 6, 61, 63, 65, 66, 67, 69 | btwnlng1 25514 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 ≠ 𝑅) → 𝑡 ∈ (𝑀𝐿𝑅)) |
| 71 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑀 ≠ 𝑅) → 𝑀 ≠ 𝑅) |
| 72 | 11 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑀 ≠ 𝑅) → 𝐷 ∈ ran 𝐿) |
| 73 | 38 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑀 ≠ 𝑅) → 𝑀 ∈ 𝐷) |
| 74 | 12 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑀 ≠ 𝑅) → 𝑅 ∈ 𝐷) |
| 75 | 4, 5, 6, 60, 62, 64, 71, 71, 72, 73, 74 | tglinethru 25531 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑀 ≠ 𝑅) → 𝐷 = (𝑀𝐿𝑅)) |
| 76 | 75 | adantlr 751 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 ≠ 𝑅) → 𝐷 = (𝑀𝐿𝑅)) |
| 77 | 70, 76 | eleqtrrd 2704 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 ≠ 𝑅) → 𝑡 ∈ 𝐷) |
| 78 | 59, 77 | pm2.61dane 2881 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) → 𝑡 ∈ 𝐷) |
| 79 | | simprrl 804 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) → 𝑡 ∈ (𝐵𝐼𝐶)) |
| 80 | 78, 79 | jca 554 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) → (𝑡 ∈ 𝐷 ∧ 𝑡 ∈ (𝐵𝐼𝐶))) |
| 81 | 80 | ex 450 |
. . . . 5
⊢ (𝜑 → ((𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅))) → (𝑡 ∈ 𝐷 ∧ 𝑡 ∈ (𝐵𝐼𝐶)))) |
| 82 | 81 | reximdv2 3014 |
. . . 4
⊢ (𝜑 → (∃𝑡 ∈ 𝑃 (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)) → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐵𝐼𝐶))) |
| 83 | 48, 82 | mpd 15 |
. . 3
⊢ (𝜑 → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐵𝐼𝐶)) |
| 84 | 36, 37, 83 | jca31 557 |
. 2
⊢ (𝜑 → ((¬ 𝐵 ∈ 𝐷 ∧ ¬ 𝐶 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐵𝐼𝐶))) |
| 85 | 4, 30, 5, 31, 9, 32 | islnopp 25631 |
. 2
⊢ (𝜑 → (𝐵𝑂𝐶 ↔ ((¬ 𝐵 ∈ 𝐷 ∧ ¬ 𝐶 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐵𝐼𝐶)))) |
| 86 | 84, 85 | mpbird 247 |
1
⊢ (𝜑 → 𝐵𝑂𝐶) |