MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabrexex2 Structured version   Visualization version   GIF version

Theorem oprabrexex2 7158
Description: Existence of an existentially restricted operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.)
Hypotheses
Ref Expression
oprabrexex2.1 𝐴 ∈ V
oprabrexex2.2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ∈ V
Assertion
Ref Expression
oprabrexex2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑤𝐴 𝜑} ∈ V
Distinct variable group:   𝑥,𝐴,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem oprabrexex2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 df-oprab 6654 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑤𝐴 𝜑} = {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑)}
2 rexcom4 3225 . . . . 5 (∃𝑤𝐴𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑤𝐴𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
3 rexcom4 3225 . . . . . . 7 (∃𝑤𝐴𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑦𝑤𝐴𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
4 rexcom4 3225 . . . . . . . . 9 (∃𝑤𝐴𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧𝑤𝐴 (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
5 r19.42v 3092 . . . . . . . . . 10 (∃𝑤𝐴 (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑))
65exbii 1774 . . . . . . . . 9 (∃𝑧𝑤𝐴 (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑))
74, 6bitri 264 . . . . . . . 8 (∃𝑤𝐴𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑))
87exbii 1774 . . . . . . 7 (∃𝑦𝑤𝐴𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑))
93, 8bitri 264 . . . . . 6 (∃𝑤𝐴𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑))
109exbii 1774 . . . . 5 (∃𝑥𝑤𝐴𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑))
112, 10bitr2i 265 . . . 4 (∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑) ↔ ∃𝑤𝐴𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
1211abbii 2739 . . 3 {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑)} = {𝑣 ∣ ∃𝑤𝐴𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
131, 12eqtri 2644 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑤𝐴 𝜑} = {𝑣 ∣ ∃𝑤𝐴𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
14 oprabrexex2.1 . . 3 𝐴 ∈ V
15 df-oprab 6654 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
16 oprabrexex2.2 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ∈ V
1715, 16eqeltrri 2698 . . 3 {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} ∈ V
1814, 17abrexex2 7148 . 2 {𝑣 ∣ ∃𝑤𝐴𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} ∈ V
1913, 18eqeltri 2697 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑤𝐴 𝜑} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wrex 2913  Vcvv 3200  cop 4183  {coprab 6651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-oprab 6654
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator