HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  opsqrlem3 Structured version   Visualization version   GIF version

Theorem opsqrlem3 29001
Description: Lemma for opsqri . (Contributed by NM, 22-Aug-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
opsqrlem2.1 𝑇 ∈ HrmOp
opsqrlem2.2 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇op (𝑥𝑥)))))
opsqrlem2.3 𝐹 = seq1(𝑆, (ℕ × { 0hop }))
Assertion
Ref Expression
opsqrlem3 ((𝐺 ∈ HrmOp ∧ 𝐻 ∈ HrmOp) → (𝐺𝑆𝐻) = (𝐺 +op ((1 / 2) ·op (𝑇op (𝐺𝐺)))))
Distinct variable group:   𝑥,𝑦,𝑇
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem opsqrlem3
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑧 = 𝐺𝑧 = 𝐺)
21, 1coeq12d 5286 . . . . 5 (𝑧 = 𝐺 → (𝑧𝑧) = (𝐺𝐺))
32oveq2d 6666 . . . 4 (𝑧 = 𝐺 → (𝑇op (𝑧𝑧)) = (𝑇op (𝐺𝐺)))
43oveq2d 6666 . . 3 (𝑧 = 𝐺 → ((1 / 2) ·op (𝑇op (𝑧𝑧))) = ((1 / 2) ·op (𝑇op (𝐺𝐺))))
51, 4oveq12d 6668 . 2 (𝑧 = 𝐺 → (𝑧 +op ((1 / 2) ·op (𝑇op (𝑧𝑧)))) = (𝐺 +op ((1 / 2) ·op (𝑇op (𝐺𝐺)))))
6 eqidd 2623 . 2 (𝑤 = 𝐻 → (𝐺 +op ((1 / 2) ·op (𝑇op (𝐺𝐺)))) = (𝐺 +op ((1 / 2) ·op (𝑇op (𝐺𝐺)))))
7 opsqrlem2.2 . . 3 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇op (𝑥𝑥)))))
8 id 22 . . . . 5 (𝑥 = 𝑧𝑥 = 𝑧)
98, 8coeq12d 5286 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝑥) = (𝑧𝑧))
109oveq2d 6666 . . . . . 6 (𝑥 = 𝑧 → (𝑇op (𝑥𝑥)) = (𝑇op (𝑧𝑧)))
1110oveq2d 6666 . . . . 5 (𝑥 = 𝑧 → ((1 / 2) ·op (𝑇op (𝑥𝑥))) = ((1 / 2) ·op (𝑇op (𝑧𝑧))))
128, 11oveq12d 6668 . . . 4 (𝑥 = 𝑧 → (𝑥 +op ((1 / 2) ·op (𝑇op (𝑥𝑥)))) = (𝑧 +op ((1 / 2) ·op (𝑇op (𝑧𝑧)))))
13 eqidd 2623 . . . 4 (𝑦 = 𝑤 → (𝑧 +op ((1 / 2) ·op (𝑇op (𝑧𝑧)))) = (𝑧 +op ((1 / 2) ·op (𝑇op (𝑧𝑧)))))
1412, 13cbvmpt2v 6735 . . 3 (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇op (𝑥𝑥))))) = (𝑧 ∈ HrmOp, 𝑤 ∈ HrmOp ↦ (𝑧 +op ((1 / 2) ·op (𝑇op (𝑧𝑧)))))
157, 14eqtri 2644 . 2 𝑆 = (𝑧 ∈ HrmOp, 𝑤 ∈ HrmOp ↦ (𝑧 +op ((1 / 2) ·op (𝑇op (𝑧𝑧)))))
16 ovex 6678 . 2 (𝐺 +op ((1 / 2) ·op (𝑇op (𝐺𝐺)))) ∈ V
175, 6, 15, 16ovmpt2 6796 1 ((𝐺 ∈ HrmOp ∧ 𝐻 ∈ HrmOp) → (𝐺𝑆𝐻) = (𝐺 +op ((1 / 2) ·op (𝑇op (𝐺𝐺)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {csn 4177   × cxp 5112  ccom 5118  (class class class)co 6650  cmpt2 6652  1c1 9937   / cdiv 10684  cn 11020  2c2 11070  seqcseq 12801   +op chos 27795   ·op chot 27796  op chod 27797   0hop ch0o 27800  HrmOpcho 27807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  opsqrlem4  29002  opsqrlem5  29003
  Copyright terms: Public domain W3C validator