![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > opsqrlem3 | Structured version Visualization version GIF version |
Description: Lemma for opsqri . (Contributed by NM, 22-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
opsqrlem2.1 | ⊢ 𝑇 ∈ HrmOp |
opsqrlem2.2 | ⊢ 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))))) |
opsqrlem2.3 | ⊢ 𝐹 = seq1(𝑆, (ℕ × { 0hop })) |
Ref | Expression |
---|---|
opsqrlem3 | ⊢ ((𝐺 ∈ HrmOp ∧ 𝐻 ∈ HrmOp) → (𝐺𝑆𝐻) = (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑧 = 𝐺 → 𝑧 = 𝐺) | |
2 | 1, 1 | coeq12d 5286 | . . . . 5 ⊢ (𝑧 = 𝐺 → (𝑧 ∘ 𝑧) = (𝐺 ∘ 𝐺)) |
3 | 2 | oveq2d 6666 | . . . 4 ⊢ (𝑧 = 𝐺 → (𝑇 −op (𝑧 ∘ 𝑧)) = (𝑇 −op (𝐺 ∘ 𝐺))) |
4 | 3 | oveq2d 6666 | . . 3 ⊢ (𝑧 = 𝐺 → ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))) = ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺)))) |
5 | 1, 4 | oveq12d 6668 | . 2 ⊢ (𝑧 = 𝐺 → (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧)))) = (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺))))) |
6 | eqidd 2623 | . 2 ⊢ (𝑤 = 𝐻 → (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺)))) = (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺))))) | |
7 | opsqrlem2.2 | . . 3 ⊢ 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))))) | |
8 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) | |
9 | 8, 8 | coeq12d 5286 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 ∘ 𝑥) = (𝑧 ∘ 𝑧)) |
10 | 9 | oveq2d 6666 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑇 −op (𝑥 ∘ 𝑥)) = (𝑇 −op (𝑧 ∘ 𝑧))) |
11 | 10 | oveq2d 6666 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))) = ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧)))) |
12 | 8, 11 | oveq12d 6668 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥)))) = (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))))) |
13 | eqidd 2623 | . . . 4 ⊢ (𝑦 = 𝑤 → (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧)))) = (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))))) | |
14 | 12, 13 | cbvmpt2v 6735 | . . 3 ⊢ (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))))) = (𝑧 ∈ HrmOp, 𝑤 ∈ HrmOp ↦ (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))))) |
15 | 7, 14 | eqtri 2644 | . 2 ⊢ 𝑆 = (𝑧 ∈ HrmOp, 𝑤 ∈ HrmOp ↦ (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))))) |
16 | ovex 6678 | . 2 ⊢ (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺)))) ∈ V | |
17 | 5, 6, 15, 16 | ovmpt2 6796 | 1 ⊢ ((𝐺 ∈ HrmOp ∧ 𝐻 ∈ HrmOp) → (𝐺𝑆𝐻) = (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {csn 4177 × cxp 5112 ∘ ccom 5118 (class class class)co 6650 ↦ cmpt2 6652 1c1 9937 / cdiv 10684 ℕcn 11020 2c2 11070 seqcseq 12801 +op chos 27795 ·op chot 27796 −op chod 27797 0hop ch0o 27800 HrmOpcho 27807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 |
This theorem is referenced by: opsqrlem4 29002 opsqrlem5 29003 |
Copyright terms: Public domain | W3C validator |