MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opswap Structured version   Visualization version   GIF version

Theorem opswap 5622
Description: Swap the members of an ordered pair. (Contributed by NM, 14-Dec-2008.) (Revised by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
opswap {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴

Proof of Theorem opswap
StepHypRef Expression
1 cnvsng 5621 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
21unieqd 4446 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
3 opex 4932 . . . 4 𝐵, 𝐴⟩ ∈ V
43unisn 4451 . . 3 {⟨𝐵, 𝐴⟩} = ⟨𝐵, 𝐴
52, 4syl6eq 2672 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩)
6 uni0 4465 . . 3 ∅ = ∅
7 opprc 4424 . . . . . . 7 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
87sneqd 4189 . . . . . 6 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = {∅})
98cnveqd 5298 . . . . 5 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = {∅})
10 cnvsn0 5603 . . . . 5 {∅} = ∅
119, 10syl6eq 2672 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = ∅)
1211unieqd 4446 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = ∅)
13 ancom 466 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐵 ∈ V ∧ 𝐴 ∈ V))
14 opprc 4424 . . . 4 (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → ⟨𝐵, 𝐴⟩ = ∅)
1513, 14sylnbi 320 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐵, 𝐴⟩ = ∅)
166, 12, 153eqtr4a 2682 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩)
175, 16pm2.61i 176 1 {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  {csn 4177  cop 4183   cuni 4436  ccnv 5113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  2nd1st  7213  cnvf1olem  7275  brtpos  7361  dftpos4  7371  tpostpos  7372  xpcomco  8050  fsumcnv  14504  fprodcnv  14713  gsumcom2  18374  txswaphmeolem  21607
  Copyright terms: Public domain W3C validator