MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brtpos Structured version   Visualization version   GIF version

Theorem brtpos 7361
Description: The transposition swaps arguments of a three-parameter relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
brtpos (𝐶𝑉 → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))

Proof of Theorem brtpos
StepHypRef Expression
1 brtpos2 7358 . . . . 5 (𝐶𝑉 → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ {⟨𝐴, 𝐵⟩}𝐹𝐶)))
21adantr 481 . . . 4 ((𝐶𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ {⟨𝐴, 𝐵⟩}𝐹𝐶)))
3 opex 4932 . . . . . . . . . 10 𝐵, 𝐴⟩ ∈ V
4 breldmg 5330 . . . . . . . . . . 11 ((⟨𝐵, 𝐴⟩ ∈ V ∧ 𝐶𝑉 ∧ ⟨𝐵, 𝐴𝐹𝐶) → ⟨𝐵, 𝐴⟩ ∈ dom 𝐹)
543expia 1267 . . . . . . . . . 10 ((⟨𝐵, 𝐴⟩ ∈ V ∧ 𝐶𝑉) → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
63, 5mpan 706 . . . . . . . . 9 (𝐶𝑉 → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
76adantr 481 . . . . . . . 8 ((𝐶𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
8 opelcnvg 5302 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
98adantl 482 . . . . . . . 8 ((𝐶𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
107, 9sylibrd 249 . . . . . . 7 ((𝐶𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐴, 𝐵⟩ ∈ dom 𝐹))
11 elun1 3780 . . . . . . 7 (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → ⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}))
1210, 11syl6 35 . . . . . 6 ((𝐶𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅})))
1312pm4.71rd 667 . . . . 5 ((𝐶𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐵, 𝐴𝐹𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ ⟨𝐵, 𝐴𝐹𝐶)))
14 opswap 5622 . . . . . . 7 {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴
1514breq1i 4660 . . . . . 6 ( {⟨𝐴, 𝐵⟩}𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶)
1615anbi2i 730 . . . . 5 ((⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ {⟨𝐴, 𝐵⟩}𝐹𝐶) ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ ⟨𝐵, 𝐴𝐹𝐶))
1713, 16syl6bbr 278 . . . 4 ((𝐶𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐵, 𝐴𝐹𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ {⟨𝐴, 𝐵⟩}𝐹𝐶)))
182, 17bitr4d 271 . . 3 ((𝐶𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))
1918ex 450 . 2 (𝐶𝑉 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶)))
20 brtpos0 7359 . . 3 (𝐶𝑉 → (∅tpos 𝐹𝐶 ↔ ∅𝐹𝐶))
21 opprc 4424 . . . . 5 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
2221breq1d 4663 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ∅tpos 𝐹𝐶))
23 ancom 466 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐵 ∈ V ∧ 𝐴 ∈ V))
24 opprc 4424 . . . . . 6 (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → ⟨𝐵, 𝐴⟩ = ∅)
2524breq1d 4663 . . . . 5 (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → (⟨𝐵, 𝐴𝐹𝐶 ↔ ∅𝐹𝐶))
2623, 25sylnbi 320 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐵, 𝐴𝐹𝐶 ↔ ∅𝐹𝐶))
2722, 26bibi12d 335 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ((⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶) ↔ (∅tpos 𝐹𝐶 ↔ ∅𝐹𝐶)))
2820, 27syl5ibrcom 237 . 2 (𝐶𝑉 → (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶)))
2919, 28pm2.61d 170 1 (𝐶𝑉 → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wcel 1990  Vcvv 3200  cun 3572  c0 3915  {csn 4177  cop 4183   cuni 4436   class class class wbr 4653  ccnv 5113  dom cdm 5114  tpos ctpos 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-tpos 7352
This theorem is referenced by:  ottpos  7362  relbrtpos  7363  dmtpos  7364  rntpos  7365  ovtpos  7367  dftpos3  7370  tpostpos  7372
  Copyright terms: Public domain W3C validator