MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otthg Structured version   Visualization version   Unicode version

Theorem otthg 4954
Description: Ordered triple theorem, closed form. (Contributed by Alexander van der Vekens, 10-Mar-2018.)
Assertion
Ref Expression
otthg  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( <. A ,  B ,  C >.  =  <. D ,  E ,  F >.  <-> 
( A  =  D  /\  B  =  E  /\  C  =  F ) ) )

Proof of Theorem otthg
StepHypRef Expression
1 df-ot 4186 . . 3  |-  <. A ,  B ,  C >.  = 
<. <. A ,  B >. ,  C >.
2 df-ot 4186 . . 3  |-  <. D ,  E ,  F >.  = 
<. <. D ,  E >. ,  F >.
31, 2eqeq12i 2636 . 2  |-  ( <. A ,  B ,  C >.  =  <. D ,  E ,  F >.  <->  <. <. A ,  B >. ,  C >.  =  <. <. D ,  E >. ,  F >. )
4 opex 4932 . . . . 5  |-  <. A ,  B >.  e.  _V
5 opthg 4946 . . . . 5  |-  ( (
<. A ,  B >.  e. 
_V  /\  C  e.  W )  ->  ( <. <. A ,  B >. ,  C >.  =  <. <. D ,  E >. ,  F >.  <->  ( <. A ,  B >.  =  <. D ,  E >.  /\  C  =  F ) ) )
64, 5mpan 706 . . . 4  |-  ( C  e.  W  ->  ( <. <. A ,  B >. ,  C >.  =  <. <. D ,  E >. ,  F >.  <->  ( <. A ,  B >.  =  <. D ,  E >.  /\  C  =  F ) ) )
7 opthg 4946 . . . . . 6  |-  ( ( A  e.  U  /\  B  e.  V )  ->  ( <. A ,  B >.  =  <. D ,  E >.  <-> 
( A  =  D  /\  B  =  E ) ) )
87anbi1d 741 . . . . 5  |-  ( ( A  e.  U  /\  B  e.  V )  ->  ( ( <. A ,  B >.  =  <. D ,  E >.  /\  C  =  F )  <->  ( ( A  =  D  /\  B  =  E )  /\  C  =  F
) ) )
9 df-3an 1039 . . . . 5  |-  ( ( A  =  D  /\  B  =  E  /\  C  =  F )  <->  ( ( A  =  D  /\  B  =  E )  /\  C  =  F ) )
108, 9syl6bbr 278 . . . 4  |-  ( ( A  e.  U  /\  B  e.  V )  ->  ( ( <. A ,  B >.  =  <. D ,  E >.  /\  C  =  F )  <->  ( A  =  D  /\  B  =  E  /\  C  =  F ) ) )
116, 10sylan9bbr 737 . . 3  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  C  e.  W )  ->  ( <. <. A ,  B >. ,  C >.  =  <. <. D ,  E >. ,  F >.  <->  ( A  =  D  /\  B  =  E  /\  C  =  F ) ) )
12113impa 1259 . 2  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( <. <. A ,  B >. ,  C >.  =  <. <. D ,  E >. ,  F >.  <->  ( A  =  D  /\  B  =  E  /\  C  =  F ) ) )
133, 12syl5bb 272 1  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( <. A ,  B ,  C >.  =  <. D ,  E ,  F >.  <-> 
( A  =  D  /\  B  =  E  /\  C  =  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183   <.cotp 4185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186
This theorem is referenced by:  otsndisj  4979  otiunsndisj  4980  otiunsndisjX  41298
  Copyright terms: Public domain W3C validator