![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovid | Structured version Visualization version GIF version |
Description: The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
ovid.1 | ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃!𝑧𝜑) |
ovid.2 | ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} |
Ref | Expression |
---|---|
ovid | ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = 𝑧 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 6653 | . . 3 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
2 | 1 | eqeq1i 2627 | . 2 ⊢ ((𝑥𝐹𝑦) = 𝑧 ↔ (𝐹‘〈𝑥, 𝑦〉) = 𝑧) |
3 | ovid.1 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃!𝑧𝜑) | |
4 | 3 | fnoprab 6763 | . . . . 5 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} Fn {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)} |
5 | ovid.2 | . . . . . 6 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} | |
6 | 5 | fneq1i 5985 | . . . . 5 ⊢ (𝐹 Fn {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)} ↔ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} Fn {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)}) |
7 | 4, 6 | mpbir 221 | . . . 4 ⊢ 𝐹 Fn {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)} |
8 | opabid 4982 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)} ↔ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)) | |
9 | 8 | biimpri 218 | . . . 4 ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)}) |
10 | fnopfvb 6237 | . . . 4 ⊢ ((𝐹 Fn {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)} ∧ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)}) → ((𝐹‘〈𝑥, 𝑦〉) = 𝑧 ↔ 〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐹)) | |
11 | 7, 9, 10 | sylancr 695 | . . 3 ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ((𝐹‘〈𝑥, 𝑦〉) = 𝑧 ↔ 〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐹)) |
12 | 5 | eleq2i 2693 | . . . . 5 ⊢ (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐹 ↔ 〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)}) |
13 | oprabid 6677 | . . . . 5 ⊢ (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} ↔ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)) | |
14 | 12, 13 | bitri 264 | . . . 4 ⊢ (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐹 ↔ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)) |
15 | 14 | baib 944 | . . 3 ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐹 ↔ 𝜑)) |
16 | 11, 15 | bitrd 268 | . 2 ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ((𝐹‘〈𝑥, 𝑦〉) = 𝑧 ↔ 𝜑)) |
17 | 2, 16 | syl5bb 272 | 1 ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = 𝑧 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∃!weu 2470 〈cop 4183 {copab 4712 Fn wfn 5883 ‘cfv 5888 (class class class)co 6650 {coprab 6651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-ov 6653 df-oprab 6654 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |