MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrnmpt2 Structured version   Visualization version   GIF version

Theorem rexrnmpt2 6776
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
rngop.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
ralrnmpt2.2 (𝑧 = 𝐶 → (𝜑𝜓))
Assertion
Ref Expression
rexrnmpt2 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥𝐴𝑦𝐵 𝜓))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝑧,𝐹   𝜓,𝑧   𝑥,𝑦,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem rexrnmpt2
StepHypRef Expression
1 rngop.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
2 ralrnmpt2.2 . . . . 5 (𝑧 = 𝐶 → (𝜑𝜓))
32notbid 308 . . . 4 (𝑧 = 𝐶 → (¬ 𝜑 ↔ ¬ 𝜓))
41, 3ralrnmpt2 6775 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∀𝑧 ∈ ran 𝐹 ¬ 𝜑 ↔ ∀𝑥𝐴𝑦𝐵 ¬ 𝜓))
54notbid 308 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (¬ ∀𝑧 ∈ ran 𝐹 ¬ 𝜑 ↔ ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜓))
6 dfrex2 2996 . 2 (∃𝑧 ∈ ran 𝐹𝜑 ↔ ¬ ∀𝑧 ∈ ran 𝐹 ¬ 𝜑)
7 dfrex2 2996 . . . 4 (∃𝑦𝐵 𝜓 ↔ ¬ ∀𝑦𝐵 ¬ 𝜓)
87rexbii 3041 . . 3 (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴 ¬ ∀𝑦𝐵 ¬ 𝜓)
9 rexnal 2995 . . 3 (∃𝑥𝐴 ¬ ∀𝑦𝐵 ¬ 𝜓 ↔ ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜓)
108, 9bitri 264 . 2 (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜓)
115, 6, 103bitr4g 303 1 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥𝐴𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196   = wceq 1483  wcel 1990  wral 2912  wrex 2913  ran crn 5115  cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-cnv 5122  df-dm 5124  df-rn 5125  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  lsmass  18083  eltx  21371  txrest  21434  txlm  21451  ptrest  33408
  Copyright terms: Public domain W3C validator