Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pcmplfin Structured version   Visualization version   Unicode version

Theorem pcmplfin 29927
Description: Given a paracompact topology  J and an open cover  U, there exists an open refinement  v that is locally finite. (Contributed by Thierry Arnoux, 31-Jan-2020.)
Hypothesis
Ref Expression
pcmplfin.x  |-  X  = 
U. J
Assertion
Ref Expression
pcmplfin  |-  ( ( J  e. Paracomp  /\  U  C_  J  /\  X  =  U. U )  ->  E. v  e.  ~P  J ( v  e.  ( LocFin `  J
)  /\  v Ref U ) )
Distinct variable groups:    v, J    v, U
Allowed substitution hint:    X( v)

Proof of Theorem pcmplfin
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 simp2 1062 . . . 4  |-  ( ( J  e. Paracomp  /\  U  C_  J  /\  X  =  U. U )  ->  U  C_  J )
2 ssexg 4804 . . . . . . 7  |-  ( ( U  C_  J  /\  J  e. Paracomp )  ->  U  e.  _V )
32ancoms 469 . . . . . 6  |-  ( ( J  e. Paracomp  /\  U  C_  J )  ->  U  e.  _V )
433adant3 1081 . . . . 5  |-  ( ( J  e. Paracomp  /\  U  C_  J  /\  X  =  U. U )  ->  U  e.  _V )
5 elpwg 4166 . . . . 5  |-  ( U  e.  _V  ->  ( U  e.  ~P J  <->  U 
C_  J ) )
64, 5syl 17 . . . 4  |-  ( ( J  e. Paracomp  /\  U  C_  J  /\  X  =  U. U )  ->  ( U  e.  ~P J  <->  U 
C_  J ) )
71, 6mpbird 247 . . 3  |-  ( ( J  e. Paracomp  /\  U  C_  J  /\  X  =  U. U )  ->  U  e.  ~P J )
8 ispcmp 29924 . . . . . 6  |-  ( J  e. Paracomp 
<->  J  e. CovHasRef ( LocFin `  J
) )
9 pcmplfin.x . . . . . . 7  |-  X  = 
U. J
109iscref 29911 . . . . . 6  |-  ( J  e. CovHasRef ( LocFin `  J )  <->  ( J  e.  Top  /\  A. u  e.  ~P  J
( X  =  U. u  ->  E. v  e.  ( ~P J  i^i  ( LocFin `
 J ) ) v Ref u ) ) )
118, 10bitri 264 . . . . 5  |-  ( J  e. Paracomp 
<->  ( J  e.  Top  /\ 
A. u  e.  ~P  J ( X  = 
U. u  ->  E. v  e.  ( ~P J  i^i  ( LocFin `  J )
) v Ref u
) ) )
1211simprbi 480 . . . 4  |-  ( J  e. Paracomp  ->  A. u  e.  ~P  J ( X  = 
U. u  ->  E. v  e.  ( ~P J  i^i  ( LocFin `  J )
) v Ref u
) )
13123ad2ant1 1082 . . 3  |-  ( ( J  e. Paracomp  /\  U  C_  J  /\  X  =  U. U )  ->  A. u  e.  ~P  J ( X  =  U. u  ->  E. v  e.  ( ~P J  i^i  ( LocFin `
 J ) ) v Ref u ) )
14 simp3 1063 . . 3  |-  ( ( J  e. Paracomp  /\  U  C_  J  /\  X  =  U. U )  ->  X  =  U. U )
15 unieq 4444 . . . . . 6  |-  ( u  =  U  ->  U. u  =  U. U )
1615eqeq2d 2632 . . . . 5  |-  ( u  =  U  ->  ( X  =  U. u  <->  X  =  U. U ) )
17 breq2 4657 . . . . . 6  |-  ( u  =  U  ->  (
v Ref u  <->  v Ref U ) )
1817rexbidv 3052 . . . . 5  |-  ( u  =  U  ->  ( E. v  e.  ( ~P J  i^i  ( LocFin `
 J ) ) v Ref u  <->  E. v  e.  ( ~P J  i^i  ( LocFin `  J )
) v Ref U
) )
1916, 18imbi12d 334 . . . 4  |-  ( u  =  U  ->  (
( X  =  U. u  ->  E. v  e.  ( ~P J  i^i  ( LocFin `
 J ) ) v Ref u )  <-> 
( X  =  U. U  ->  E. v  e.  ( ~P J  i^i  ( LocFin `
 J ) ) v Ref U ) ) )
2019rspcv 3305 . . 3  |-  ( U  e.  ~P J  -> 
( A. u  e. 
~P  J ( X  =  U. u  ->  E. v  e.  ( ~P J  i^i  ( LocFin `
 J ) ) v Ref u )  ->  ( X  = 
U. U  ->  E. v  e.  ( ~P J  i^i  ( LocFin `  J )
) v Ref U
) ) )
217, 13, 14, 20syl3c 66 . 2  |-  ( ( J  e. Paracomp  /\  U  C_  J  /\  X  =  U. U )  ->  E. v  e.  ( ~P J  i^i  ( LocFin `  J )
) v Ref U
)
22 elin 3796 . . . . 5  |-  ( v  e.  ( ~P J  i^i  ( LocFin `  J )
)  <->  ( v  e. 
~P J  /\  v  e.  ( LocFin `  J )
) )
2322anbi1i 731 . . . 4  |-  ( ( v  e.  ( ~P J  i^i  ( LocFin `  J ) )  /\  v Ref U )  <->  ( (
v  e.  ~P J  /\  v  e.  ( LocFin `
 J ) )  /\  v Ref U
) )
24 anass 681 . . . 4  |-  ( ( ( v  e.  ~P J  /\  v  e.  (
LocFin `  J ) )  /\  v Ref U
)  <->  ( v  e. 
~P J  /\  (
v  e.  ( LocFin `  J )  /\  v Ref U ) ) )
2523, 24bitri 264 . . 3  |-  ( ( v  e.  ( ~P J  i^i  ( LocFin `  J ) )  /\  v Ref U )  <->  ( v  e.  ~P J  /\  (
v  e.  ( LocFin `  J )  /\  v Ref U ) ) )
2625rexbii2 3039 . 2  |-  ( E. v  e.  ( ~P J  i^i  ( LocFin `  J ) ) v Ref U  <->  E. v  e.  ~P  J ( v  e.  ( LocFin `  J
)  /\  v Ref U ) )
2721, 26sylib 208 1  |-  ( ( J  e. Paracomp  /\  U  C_  J  /\  X  =  U. U )  ->  E. v  e.  ~P  J ( v  e.  ( LocFin `  J
)  /\  v Ref U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653   ` cfv 5888   Topctop 20698   Refcref 21305   LocFinclocfin 21307  CovHasRefccref 29909  Paracompcpcmp 29922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-cref 29910  df-pcmp 29923
This theorem is referenced by:  pcmplfinf  29928
  Copyright terms: Public domain W3C validator