Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimltpnf2 Structured version   Visualization version   GIF version

Theorem pimltpnf2 40923
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimltpnf2.1 𝑥𝐹
pimltpnf2.2 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
pimltpnf2 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < +∞} = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem pimltpnf2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2764 . . . 4 𝑥𝐴
2 nfcv 2764 . . . 4 𝑦𝐴
3 nfv 1843 . . . 4 𝑦(𝐹𝑥) < +∞
4 pimltpnf2.1 . . . . . 6 𝑥𝐹
5 nfcv 2764 . . . . . 6 𝑥𝑦
64, 5nffv 6198 . . . . 5 𝑥(𝐹𝑦)
7 nfcv 2764 . . . . 5 𝑥 <
8 nfcv 2764 . . . . 5 𝑥+∞
96, 7, 8nfbr 4699 . . . 4 𝑥(𝐹𝑦) < +∞
10 fveq2 6191 . . . . 5 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1110breq1d 4663 . . . 4 (𝑥 = 𝑦 → ((𝐹𝑥) < +∞ ↔ (𝐹𝑦) < +∞))
121, 2, 3, 9, 11cbvrab 3198 . . 3 {𝑥𝐴 ∣ (𝐹𝑥) < +∞} = {𝑦𝐴 ∣ (𝐹𝑦) < +∞}
1312a1i 11 . 2 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < +∞} = {𝑦𝐴 ∣ (𝐹𝑦) < +∞})
14 nfv 1843 . . 3 𝑦𝜑
15 pimltpnf2.2 . . . 4 (𝜑𝐹:𝐴⟶ℝ)
1615ffvelrnda 6359 . . 3 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
1714, 16pimltpnf 40916 . 2 (𝜑 → {𝑦𝐴 ∣ (𝐹𝑦) < +∞} = 𝐴)
1813, 17eqtrd 2656 1 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < +∞} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wnfc 2751  {crab 2916   class class class wbr 4653  wf 5884  cfv 5888  cr 9935  +∞cpnf 10071   < clt 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-pnf 10076  df-xr 10078  df-ltxr 10079
This theorem is referenced by:  smfpimltxr  40956
  Copyright terms: Public domain W3C validator