HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjfni Structured version   Visualization version   GIF version

Theorem pjfni 28560
Description: Functionality of a projection. (Contributed by NM, 30-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
pjfn.1 𝐻C
Assertion
Ref Expression
pjfni (proj𝐻) Fn ℋ

Proof of Theorem pjfni
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 6615 . 2 (𝑦𝐻𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 + 𝑧)) ∈ V
2 pjfn.1 . . 3 𝐻C
3 pjhfval 28255 . . 3 (𝐻C → (proj𝐻) = (𝑥 ∈ ℋ ↦ (𝑦𝐻𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 + 𝑧))))
42, 3ax-mp 5 . 2 (proj𝐻) = (𝑥 ∈ ℋ ↦ (𝑦𝐻𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 + 𝑧)))
51, 4fnmpti 6022 1 (proj𝐻) Fn ℋ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  wrex 2913  cmpt 4729   Fn wfn 5883  cfv 5888  crio 6610  (class class class)co 6650  chil 27776   + cva 27777   C cch 27786  cort 27787  projcpjh 27794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-hilex 27856
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-pjh 28254
This theorem is referenced by:  pjrni  28561  pjfoi  28562  pjfi  28563  dfiop2  28612  hmopidmpji  29011  pjssdif2i  29033  pjimai  29035
  Copyright terms: Public domain W3C validator