| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32 | Structured version Visualization version Unicode version | ||
| Description: Distribution of implication over biconditional. Theorem *5.32 of [WhiteheadRussell] p. 125. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| pm5.32 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notbi 309 |
. . . 4
| |
| 2 | 1 | imbi2i 326 |
. . 3
|
| 3 | pm5.74 259 |
. . 3
| |
| 4 | notbi 309 |
. . 3
| |
| 5 | 2, 3, 4 | 3bitri 286 |
. 2
|
| 6 | df-an 386 |
. . 3
| |
| 7 | df-an 386 |
. . 3
| |
| 8 | 6, 7 | bibi12i 329 |
. 2
|
| 9 | 5, 8 | bitr4i 267 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: pm5.32i 669 pm5.32d 671 xordi 937 rabbi 3120 rabxfrd 4889 asymref 5512 mpt22eqb 6769 cfilucfil4 23118 wl-ax11-lem8 33369 relexp0eq 37993 2sb5nd 38776 2sb5ndVD 39146 2sb5ndALT 39168 |
| Copyright terms: Public domain | W3C validator |