MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmsspw Structured version   Visualization version   GIF version

Theorem pmsspw 7892
Description: Partial maps are a subset of the power set of the Cartesian product of its arguments. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
pmsspw (𝐴pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)

Proof of Theorem pmsspw
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 n0i 3920 . . . . . . 7 (𝑓 ∈ (𝐴pm 𝐵) → ¬ (𝐴pm 𝐵) = ∅)
2 fnpm 7865 . . . . . . . . 9 pm Fn (V × V)
3 fndm 5990 . . . . . . . . 9 ( ↑pm Fn (V × V) → dom ↑pm = (V × V))
42, 3ax-mp 5 . . . . . . . 8 dom ↑pm = (V × V)
54ndmov 6818 . . . . . . 7 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴pm 𝐵) = ∅)
61, 5nsyl2 142 . . . . . 6 (𝑓 ∈ (𝐴pm 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
7 elpmg 7873 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ (𝐴pm 𝐵) ↔ (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴))))
86, 7syl 17 . . . . 5 (𝑓 ∈ (𝐴pm 𝐵) → (𝑓 ∈ (𝐴pm 𝐵) ↔ (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴))))
98ibi 256 . . . 4 (𝑓 ∈ (𝐴pm 𝐵) → (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴)))
109simprd 479 . . 3 (𝑓 ∈ (𝐴pm 𝐵) → 𝑓 ⊆ (𝐵 × 𝐴))
11 selpw 4165 . . 3 (𝑓 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝑓 ⊆ (𝐵 × 𝐴))
1210, 11sylibr 224 . 2 (𝑓 ∈ (𝐴pm 𝐵) → 𝑓 ∈ 𝒫 (𝐵 × 𝐴))
1312ssriv 3607 1 (𝐴pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  c0 3915  𝒫 cpw 4158   × cxp 5112  dom cdm 5114  Fun wfun 5882   Fn wfn 5883  (class class class)co 6650  pm cpm 7858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-pm 7860
This theorem is referenced by:  mapsspw  7893  wunpm  9547
  Copyright terms: Public domain W3C validator