| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > polatN | Structured version Visualization version GIF version | ||
| Description: The polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| polat.o | ⊢ ⊥ = (oc‘𝐾) |
| polat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| polat.m | ⊢ 𝑀 = (pmap‘𝐾) |
| polat.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| polatN | ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = (𝑀‘( ⊥ ‘𝑄))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4339 | . . 3 ⊢ (𝑄 ∈ 𝐴 → {𝑄} ⊆ 𝐴) | |
| 2 | polat.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
| 3 | polat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | polat.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 5 | polat.p | . . . 4 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
| 6 | 2, 3, 4, 5 | polvalN 35191 | . . 3 ⊢ ((𝐾 ∈ OL ∧ {𝑄} ⊆ 𝐴) → (𝑃‘{𝑄}) = (𝐴 ∩ ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝)))) |
| 7 | 1, 6 | sylan2 491 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = (𝐴 ∩ ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝)))) |
| 8 | fveq2 6191 | . . . . . 6 ⊢ (𝑝 = 𝑄 → ( ⊥ ‘𝑝) = ( ⊥ ‘𝑄)) | |
| 9 | 8 | fveq2d 6195 | . . . . 5 ⊢ (𝑝 = 𝑄 → (𝑀‘( ⊥ ‘𝑝)) = (𝑀‘( ⊥ ‘𝑄))) |
| 10 | 9 | iinxsng 4600 | . . . 4 ⊢ (𝑄 ∈ 𝐴 → ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝)) = (𝑀‘( ⊥ ‘𝑄))) |
| 11 | 10 | adantl 482 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝)) = (𝑀‘( ⊥ ‘𝑄))) |
| 12 | 11 | ineq2d 3814 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝐴 ∩ ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝))) = (𝐴 ∩ (𝑀‘( ⊥ ‘𝑄)))) |
| 13 | olop 34501 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 14 | eqid 2622 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 15 | 14, 3 | atbase 34576 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 16 | 14, 2 | opoccl 34481 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑄 ∈ (Base‘𝐾)) → ( ⊥ ‘𝑄) ∈ (Base‘𝐾)) |
| 17 | 13, 15, 16 | syl2an 494 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → ( ⊥ ‘𝑄) ∈ (Base‘𝐾)) |
| 18 | 14, 3, 4 | pmapssat 35045 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ ( ⊥ ‘𝑄) ∈ (Base‘𝐾)) → (𝑀‘( ⊥ ‘𝑄)) ⊆ 𝐴) |
| 19 | 17, 18 | syldan 487 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑀‘( ⊥ ‘𝑄)) ⊆ 𝐴) |
| 20 | sseqin2 3817 | . . 3 ⊢ ((𝑀‘( ⊥ ‘𝑄)) ⊆ 𝐴 ↔ (𝐴 ∩ (𝑀‘( ⊥ ‘𝑄))) = (𝑀‘( ⊥ ‘𝑄))) | |
| 21 | 19, 20 | sylib 208 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝐴 ∩ (𝑀‘( ⊥ ‘𝑄))) = (𝑀‘( ⊥ ‘𝑄))) |
| 22 | 7, 12, 21 | 3eqtrd 2660 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = (𝑀‘( ⊥ ‘𝑄))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∩ cin 3573 ⊆ wss 3574 {csn 4177 ∩ ciin 4521 ‘cfv 5888 Basecbs 15857 occoc 15949 OPcops 34459 OLcol 34461 Atomscatm 34550 pmapcpmap 34783 ⊥𝑃cpolN 35188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oposet 34463 df-ol 34465 df-ats 34554 df-pmap 34790 df-polarityN 35189 |
| This theorem is referenced by: 2polatN 35218 |
| Copyright terms: Public domain | W3C validator |