Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polfvalN Structured version   Visualization version   GIF version

Theorem polfvalN 35190
Description: The projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
polfval.o = (oc‘𝐾)
polfval.a 𝐴 = (Atoms‘𝐾)
polfval.m 𝑀 = (pmap‘𝐾)
polfval.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
polfvalN (𝐾𝐵𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
Distinct variable groups:   𝐴,𝑚   𝑚,𝑝,𝐾
Allowed substitution hints:   𝐴(𝑝)   𝐵(𝑚,𝑝)   𝑃(𝑚,𝑝)   𝑀(𝑚,𝑝)   (𝑚,𝑝)

Proof of Theorem polfvalN
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2 (𝐾𝐵𝐾 ∈ V)
2 polfval.p . . 3 𝑃 = (⊥𝑃𝐾)
3 fveq2 6191 . . . . . . 7 ( = 𝐾 → (Atoms‘) = (Atoms‘𝐾))
4 polfval.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
53, 4syl6eqr 2674 . . . . . 6 ( = 𝐾 → (Atoms‘) = 𝐴)
65pweqd 4163 . . . . 5 ( = 𝐾 → 𝒫 (Atoms‘) = 𝒫 𝐴)
7 fveq2 6191 . . . . . . . . . 10 ( = 𝐾 → (pmap‘) = (pmap‘𝐾))
8 polfval.m . . . . . . . . . 10 𝑀 = (pmap‘𝐾)
97, 8syl6eqr 2674 . . . . . . . . 9 ( = 𝐾 → (pmap‘) = 𝑀)
10 fveq2 6191 . . . . . . . . . . 11 ( = 𝐾 → (oc‘) = (oc‘𝐾))
11 polfval.o . . . . . . . . . . 11 = (oc‘𝐾)
1210, 11syl6eqr 2674 . . . . . . . . . 10 ( = 𝐾 → (oc‘) = )
1312fveq1d 6193 . . . . . . . . 9 ( = 𝐾 → ((oc‘)‘𝑝) = ( 𝑝))
149, 13fveq12d 6197 . . . . . . . 8 ( = 𝐾 → ((pmap‘)‘((oc‘)‘𝑝)) = (𝑀‘( 𝑝)))
1514adantr 481 . . . . . . 7 (( = 𝐾𝑝𝑚) → ((pmap‘)‘((oc‘)‘𝑝)) = (𝑀‘( 𝑝)))
1615iineq2dv 4543 . . . . . 6 ( = 𝐾 𝑝𝑚 ((pmap‘)‘((oc‘)‘𝑝)) = 𝑝𝑚 (𝑀‘( 𝑝)))
175, 16ineq12d 3815 . . . . 5 ( = 𝐾 → ((Atoms‘) ∩ 𝑝𝑚 ((pmap‘)‘((oc‘)‘𝑝))) = (𝐴 𝑝𝑚 (𝑀‘( 𝑝))))
186, 17mpteq12dv 4733 . . . 4 ( = 𝐾 → (𝑚 ∈ 𝒫 (Atoms‘) ↦ ((Atoms‘) ∩ 𝑝𝑚 ((pmap‘)‘((oc‘)‘𝑝)))) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
19 df-polarityN 35189 . . . 4 𝑃 = ( ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘) ↦ ((Atoms‘) ∩ 𝑝𝑚 ((pmap‘)‘((oc‘)‘𝑝)))))
20 fvex 6201 . . . . . . 7 (Atoms‘𝐾) ∈ V
214, 20eqeltri 2697 . . . . . 6 𝐴 ∈ V
2221pwex 4848 . . . . 5 𝒫 𝐴 ∈ V
2322mptex 6486 . . . 4 (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))) ∈ V
2418, 19, 23fvmpt 6282 . . 3 (𝐾 ∈ V → (⊥𝑃𝐾) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
252, 24syl5eq 2668 . 2 (𝐾 ∈ V → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
261, 25syl 17 1 (𝐾𝐵𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  cin 3573  𝒫 cpw 4158   ciin 4521  cmpt 4729  cfv 5888  occoc 15949  Atomscatm 34550  pmapcpmap 34783  𝑃cpolN 35188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-polarityN 35189
This theorem is referenced by:  polvalN  35191
  Copyright terms: Public domain W3C validator