![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > polfvalN | Structured version Visualization version GIF version |
Description: The projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polfval.o | ⊢ ⊥ = (oc‘𝐾) |
polfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
polfval.m | ⊢ 𝑀 = (pmap‘𝐾) |
polfval.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
polfvalN | ⊢ (𝐾 ∈ 𝐵 → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3212 | . 2 ⊢ (𝐾 ∈ 𝐵 → 𝐾 ∈ V) | |
2 | polfval.p | . . 3 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
3 | fveq2 6191 | . . . . . . 7 ⊢ (ℎ = 𝐾 → (Atoms‘ℎ) = (Atoms‘𝐾)) | |
4 | polfval.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 3, 4 | syl6eqr 2674 | . . . . . 6 ⊢ (ℎ = 𝐾 → (Atoms‘ℎ) = 𝐴) |
6 | 5 | pweqd 4163 | . . . . 5 ⊢ (ℎ = 𝐾 → 𝒫 (Atoms‘ℎ) = 𝒫 𝐴) |
7 | fveq2 6191 | . . . . . . . . . 10 ⊢ (ℎ = 𝐾 → (pmap‘ℎ) = (pmap‘𝐾)) | |
8 | polfval.m | . . . . . . . . . 10 ⊢ 𝑀 = (pmap‘𝐾) | |
9 | 7, 8 | syl6eqr 2674 | . . . . . . . . 9 ⊢ (ℎ = 𝐾 → (pmap‘ℎ) = 𝑀) |
10 | fveq2 6191 | . . . . . . . . . . 11 ⊢ (ℎ = 𝐾 → (oc‘ℎ) = (oc‘𝐾)) | |
11 | polfval.o | . . . . . . . . . . 11 ⊢ ⊥ = (oc‘𝐾) | |
12 | 10, 11 | syl6eqr 2674 | . . . . . . . . . 10 ⊢ (ℎ = 𝐾 → (oc‘ℎ) = ⊥ ) |
13 | 12 | fveq1d 6193 | . . . . . . . . 9 ⊢ (ℎ = 𝐾 → ((oc‘ℎ)‘𝑝) = ( ⊥ ‘𝑝)) |
14 | 9, 13 | fveq12d 6197 | . . . . . . . 8 ⊢ (ℎ = 𝐾 → ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝)) = (𝑀‘( ⊥ ‘𝑝))) |
15 | 14 | adantr 481 | . . . . . . 7 ⊢ ((ℎ = 𝐾 ∧ 𝑝 ∈ 𝑚) → ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝)) = (𝑀‘( ⊥ ‘𝑝))) |
16 | 15 | iineq2dv 4543 | . . . . . 6 ⊢ (ℎ = 𝐾 → ∩ 𝑝 ∈ 𝑚 ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝)) = ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))) |
17 | 5, 16 | ineq12d 3815 | . . . . 5 ⊢ (ℎ = 𝐾 → ((Atoms‘ℎ) ∩ ∩ 𝑝 ∈ 𝑚 ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝))) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝)))) |
18 | 6, 17 | mpteq12dv 4733 | . . . 4 ⊢ (ℎ = 𝐾 → (𝑚 ∈ 𝒫 (Atoms‘ℎ) ↦ ((Atoms‘ℎ) ∩ ∩ 𝑝 ∈ 𝑚 ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝)))) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
19 | df-polarityN 35189 | . . . 4 ⊢ ⊥𝑃 = (ℎ ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘ℎ) ↦ ((Atoms‘ℎ) ∩ ∩ 𝑝 ∈ 𝑚 ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝))))) | |
20 | fvex 6201 | . . . . . . 7 ⊢ (Atoms‘𝐾) ∈ V | |
21 | 4, 20 | eqeltri 2697 | . . . . . 6 ⊢ 𝐴 ∈ V |
22 | 21 | pwex 4848 | . . . . 5 ⊢ 𝒫 𝐴 ∈ V |
23 | 22 | mptex 6486 | . . . 4 ⊢ (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝)))) ∈ V |
24 | 18, 19, 23 | fvmpt 6282 | . . 3 ⊢ (𝐾 ∈ V → (⊥𝑃‘𝐾) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
25 | 2, 24 | syl5eq 2668 | . 2 ⊢ (𝐾 ∈ V → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
26 | 1, 25 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐵 → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∩ cin 3573 𝒫 cpw 4158 ∩ ciin 4521 ↦ cmpt 4729 ‘cfv 5888 occoc 15949 Atomscatm 34550 pmapcpmap 34783 ⊥𝑃cpolN 35188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-polarityN 35189 |
This theorem is referenced by: polvalN 35191 |
Copyright terms: Public domain | W3C validator |