![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > polsubN | Structured version Visualization version GIF version |
Description: The polarity of a set of atoms is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polsubsp.a | ⊢ 𝐴 = (Atoms‘𝐾) |
polsubsp.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
polsubsp.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
polsubN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
2 | eqid 2622 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
3 | polsubsp.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | eqid 2622 | . . 3 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
5 | polsubsp.p | . . 3 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
6 | 1, 2, 3, 4, 5 | polval2N 35192 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) |
7 | hllat 34650 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
8 | 7 | adantr 481 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ Lat) |
9 | hlop 34649 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
10 | 9 | adantr 481 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ OP) |
11 | hlclat 34645 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
12 | eqid 2622 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
13 | 12, 3 | atssbase 34577 | . . . . . 6 ⊢ 𝐴 ⊆ (Base‘𝐾) |
14 | sstr 3611 | . . . . . 6 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾)) | |
15 | 13, 14 | mpan2 707 | . . . . 5 ⊢ (𝑋 ⊆ 𝐴 → 𝑋 ⊆ (Base‘𝐾)) |
16 | 12, 1 | clatlubcl 17112 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
17 | 11, 15, 16 | syl2an 494 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
18 | 12, 2 | opoccl 34481 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) |
19 | 10, 17, 18 | syl2anc 693 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) |
20 | polsubsp.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
21 | 12, 20, 4 | pmapsub 35054 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∈ 𝑆) |
22 | 8, 19, 21 | syl2anc 693 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∈ 𝑆) |
23 | 6, 22 | eqeltrd 2701 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 ‘cfv 5888 Basecbs 15857 occoc 15949 lubclub 16942 Latclat 17045 CLatccla 17107 OPcops 34459 Atomscatm 34550 HLchlt 34637 PSubSpcpsubsp 34782 pmapcpmap 34783 ⊥𝑃cpolN 35188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-riotaBAD 34239 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-undef 7399 df-preset 16928 df-poset 16946 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-psubsp 34789 df-pmap 34790 df-polarityN 35189 |
This theorem is referenced by: polssatN 35194 pclss2polN 35207 psubclsubN 35226 osumcllem1N 35242 |
Copyright terms: Public domain | W3C validator |