MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppival Structured version   Visualization version   GIF version

Theorem ppival 24853
Description: Value of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
ppival (𝐴 ∈ ℝ → (π𝐴) = (#‘((0[,]𝐴) ∩ ℙ)))

Proof of Theorem ppival
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . 4 (𝑥 = 𝐴 → (0[,]𝑥) = (0[,]𝐴))
21ineq1d 3813 . . 3 (𝑥 = 𝐴 → ((0[,]𝑥) ∩ ℙ) = ((0[,]𝐴) ∩ ℙ))
32fveq2d 6195 . 2 (𝑥 = 𝐴 → (#‘((0[,]𝑥) ∩ ℙ)) = (#‘((0[,]𝐴) ∩ ℙ)))
4 df-ppi 24826 . 2 π = (𝑥 ∈ ℝ ↦ (#‘((0[,]𝑥) ∩ ℙ)))
5 fvex 6201 . 2 (#‘((0[,]𝐴) ∩ ℙ)) ∈ V
63, 4, 5fvmpt 6282 1 (𝐴 ∈ ℝ → (π𝐴) = (#‘((0[,]𝐴) ∩ ℙ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  cin 3573  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  [,]cicc 12178  #chash 13117  cprime 15385  πcppi 24820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-ppi 24826
This theorem is referenced by:  ppival2  24854  ppival2g  24855  ppifl  24886  ppiwordi  24888  chtleppi  24935
  Copyright terms: Public domain W3C validator