![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ppiwordi | Structured version Visualization version GIF version |
Description: The prime-counting function π is weakly increasing. (Contributed by Mario Carneiro, 19-Sep-2014.) |
Ref | Expression |
---|---|
ppiwordi | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (π‘𝐴) ≤ (π‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1062 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) | |
2 | ppifi 24832 | . . . . 5 ⊢ (𝐵 ∈ ℝ → ((0[,]𝐵) ∩ ℙ) ∈ Fin) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((0[,]𝐵) ∩ ℙ) ∈ Fin) |
4 | 0red 10041 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 0 ∈ ℝ) | |
5 | 0le0 11110 | . . . . . . 7 ⊢ 0 ≤ 0 | |
6 | 5 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 0 ≤ 0) |
7 | simp3 1063 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
8 | iccss 12241 | . . . . . 6 ⊢ (((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 0 ∧ 𝐴 ≤ 𝐵)) → (0[,]𝐴) ⊆ (0[,]𝐵)) | |
9 | 4, 1, 6, 7, 8 | syl22anc 1327 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (0[,]𝐴) ⊆ (0[,]𝐵)) |
10 | ssrin 3838 | . . . . 5 ⊢ ((0[,]𝐴) ⊆ (0[,]𝐵) → ((0[,]𝐴) ∩ ℙ) ⊆ ((0[,]𝐵) ∩ ℙ)) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((0[,]𝐴) ∩ ℙ) ⊆ ((0[,]𝐵) ∩ ℙ)) |
12 | ssdomg 8001 | . . . 4 ⊢ (((0[,]𝐵) ∩ ℙ) ∈ Fin → (((0[,]𝐴) ∩ ℙ) ⊆ ((0[,]𝐵) ∩ ℙ) → ((0[,]𝐴) ∩ ℙ) ≼ ((0[,]𝐵) ∩ ℙ))) | |
13 | 3, 11, 12 | sylc 65 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((0[,]𝐴) ∩ ℙ) ≼ ((0[,]𝐵) ∩ ℙ)) |
14 | ppifi 24832 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ∈ Fin) | |
15 | 14 | 3ad2ant1 1082 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((0[,]𝐴) ∩ ℙ) ∈ Fin) |
16 | hashdom 13168 | . . . 4 ⊢ ((((0[,]𝐴) ∩ ℙ) ∈ Fin ∧ ((0[,]𝐵) ∩ ℙ) ∈ Fin) → ((#‘((0[,]𝐴) ∩ ℙ)) ≤ (#‘((0[,]𝐵) ∩ ℙ)) ↔ ((0[,]𝐴) ∩ ℙ) ≼ ((0[,]𝐵) ∩ ℙ))) | |
17 | 15, 3, 16 | syl2anc 693 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((#‘((0[,]𝐴) ∩ ℙ)) ≤ (#‘((0[,]𝐵) ∩ ℙ)) ↔ ((0[,]𝐴) ∩ ℙ) ≼ ((0[,]𝐵) ∩ ℙ))) |
18 | 13, 17 | mpbird 247 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (#‘((0[,]𝐴) ∩ ℙ)) ≤ (#‘((0[,]𝐵) ∩ ℙ))) |
19 | ppival 24853 | . . 3 ⊢ (𝐴 ∈ ℝ → (π‘𝐴) = (#‘((0[,]𝐴) ∩ ℙ))) | |
20 | 19 | 3ad2ant1 1082 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (π‘𝐴) = (#‘((0[,]𝐴) ∩ ℙ))) |
21 | ppival 24853 | . . 3 ⊢ (𝐵 ∈ ℝ → (π‘𝐵) = (#‘((0[,]𝐵) ∩ ℙ))) | |
22 | 1, 21 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (π‘𝐵) = (#‘((0[,]𝐵) ∩ ℙ))) |
23 | 18, 20, 22 | 3brtr4d 4685 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (π‘𝐴) ≤ (π‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∩ cin 3573 ⊆ wss 3574 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ≼ cdom 7953 Fincfn 7955 ℝcr 9935 0cc0 9936 ≤ cle 10075 [,]cicc 12178 #chash 13117 ℙcprime 15385 πcppi 24820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-rp 11833 df-icc 12182 df-fz 12327 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-prm 15386 df-ppi 24826 |
This theorem is referenced by: ppinncl 24900 ppieq0 24902 ppiub 24929 chebbnd1lem1 25158 chebbnd1lem3 25160 |
Copyright terms: Public domain | W3C validator |