MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodex Structured version   Visualization version   GIF version

Theorem prodex 14637
Description: A product is a set. (Contributed by Scott Fenton, 4-Dec-2017.)
Assertion
Ref Expression
prodex 𝑘𝐴 𝐵 ∈ V

Proof of Theorem prodex
Dummy variables 𝑓 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prod 14636 . 2 𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 iotaex 5868 . 2 (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) ∈ V
31, 2eqeltri 2697 1 𝑘𝐴 𝐵 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wo 383  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wrex 2913  Vcvv 3200  csb 3533  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729  cio 5849  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   · cmul 9941  cn 11020  cz 11377  cuz 11687  ...cfz 12326  seqcseq 12801  cli 14215  cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851  df-prod 14636
This theorem is referenced by:  risefacval  14739  fallfacval  14740  prmoval  15737  fprodsubrecnncnvlem  40121  fprodaddrecnncnvlem  40123  etransclem13  40464  ovnlecvr  40772  ovncvrrp  40778  hoidmvval  40791  vonioolem1  40894
  Copyright terms: Public domain W3C validator