Proof of Theorem hoidmvval
| Step | Hyp | Ref
| Expression |
| 1 | | hoidmvval.l |
. . . 4
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚
𝑥), 𝑏 ∈ (ℝ ↑𝑚
𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| 2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚
𝑥), 𝑏 ∈ (ℝ ↑𝑚
𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))))) |
| 3 | | oveq2 6658 |
. . . . 5
⊢ (𝑥 = 𝑋 → (ℝ ↑𝑚
𝑥) = (ℝ
↑𝑚 𝑋)) |
| 4 | | eqeq1 2626 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥 = ∅ ↔ 𝑋 = ∅)) |
| 5 | | prodeq1 14639 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) |
| 6 | 4, 5 | ifbieq2d 4111 |
. . . . 5
⊢ (𝑥 = 𝑋 → if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) |
| 7 | 3, 3, 6 | mpt2eq123dv 6717 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝑎 ∈ (ℝ ↑𝑚
𝑥), 𝑏 ∈ (ℝ ↑𝑚
𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) = (𝑎 ∈ (ℝ ↑𝑚
𝑋), 𝑏 ∈ (ℝ ↑𝑚
𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| 8 | 7 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑎 ∈ (ℝ ↑𝑚
𝑥), 𝑏 ∈ (ℝ ↑𝑚
𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) = (𝑎 ∈ (ℝ ↑𝑚
𝑋), 𝑏 ∈ (ℝ ↑𝑚
𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| 9 | | hoidmvval.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 10 | | ovex 6678 |
. . . . 5
⊢ (ℝ
↑𝑚 𝑋) ∈ V |
| 11 | 10, 10 | mpt2ex 7247 |
. . . 4
⊢ (𝑎 ∈ (ℝ
↑𝑚 𝑋), 𝑏 ∈ (ℝ ↑𝑚
𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) ∈ V |
| 12 | 11 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑎 ∈ (ℝ ↑𝑚
𝑋), 𝑏 ∈ (ℝ ↑𝑚
𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) ∈ V) |
| 13 | 2, 8, 9, 12 | fvmptd 6288 |
. 2
⊢ (𝜑 → (𝐿‘𝑋) = (𝑎 ∈ (ℝ ↑𝑚
𝑋), 𝑏 ∈ (ℝ ↑𝑚
𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| 14 | | fveq1 6190 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑎‘𝑘) = (𝐴‘𝑘)) |
| 15 | 14 | adantr 481 |
. . . . . . 7
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑎‘𝑘) = (𝐴‘𝑘)) |
| 16 | | fveq1 6190 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → (𝑏‘𝑘) = (𝐵‘𝑘)) |
| 17 | 16 | adantl 482 |
. . . . . . 7
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑏‘𝑘) = (𝐵‘𝑘)) |
| 18 | 15, 17 | oveq12d 6668 |
. . . . . 6
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 19 | 18 | fveq2d 6195 |
. . . . 5
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 20 | 19 | prodeq2ad 39824 |
. . . 4
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 21 | 20 | ifeq2d 4105 |
. . 3
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
| 22 | 21 | adantl 482 |
. 2
⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
| 23 | | hoidmvval.a |
. . 3
⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
| 24 | | reex 10027 |
. . . . 5
⊢ ℝ
∈ V |
| 25 | 24 | a1i 11 |
. . . 4
⊢ (𝜑 → ℝ ∈
V) |
| 26 | | elmapg 7870 |
. . . 4
⊢ ((ℝ
∈ V ∧ 𝑋 ∈
Fin) → (𝐴 ∈
(ℝ ↑𝑚 𝑋) ↔ 𝐴:𝑋⟶ℝ)) |
| 27 | 25, 9, 26 | syl2anc 693 |
. . 3
⊢ (𝜑 → (𝐴 ∈ (ℝ ↑𝑚
𝑋) ↔ 𝐴:𝑋⟶ℝ)) |
| 28 | 23, 27 | mpbird 247 |
. 2
⊢ (𝜑 → 𝐴 ∈ (ℝ ↑𝑚
𝑋)) |
| 29 | | hoidmvval.b |
. . 3
⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
| 30 | | elmapg 7870 |
. . . 4
⊢ ((ℝ
∈ V ∧ 𝑋 ∈
Fin) → (𝐵 ∈
(ℝ ↑𝑚 𝑋) ↔ 𝐵:𝑋⟶ℝ)) |
| 31 | 25, 9, 30 | syl2anc 693 |
. . 3
⊢ (𝜑 → (𝐵 ∈ (ℝ ↑𝑚
𝑋) ↔ 𝐵:𝑋⟶ℝ)) |
| 32 | 29, 31 | mpbird 247 |
. 2
⊢ (𝜑 → 𝐵 ∈ (ℝ ↑𝑚
𝑋)) |
| 33 | | c0ex 10034 |
. . . 4
⊢ 0 ∈
V |
| 34 | | prodex 14637 |
. . . 4
⊢
∏𝑘 ∈
𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ V |
| 35 | 33, 34 | ifex 4156 |
. . 3
⊢ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) ∈ V |
| 36 | 35 | a1i 11 |
. 2
⊢ (𝜑 → if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) ∈ V) |
| 37 | 13, 22, 28, 32, 36 | ovmpt2d 6788 |
1
⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |