![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fprodsubrecnncnvlem | Structured version Visualization version GIF version |
Description: The sequence 𝑆 of finite products, where every factor is subtracted an "always smaller" amount, converges to the finite product of the factors. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
fprodsubrecnncnvlem.k | ⊢ Ⅎ𝑘𝜑 |
fprodsubrecnncnvlem.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fprodsubrecnncnvlem.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
fprodsubrecnncnvlem.s | ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 − (1 / 𝑛))) |
fprodsubrecnncnvlem.f | ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 − 𝑥)) |
fprodsubrecnncnvlem.g | ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) |
Ref | Expression |
---|---|
fprodsubrecnncnvlem | ⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 11723 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1zzd 11408 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
3 | fprodsubrecnncnvlem.k | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
4 | fprodsubrecnncnvlem.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
5 | fprodsubrecnncnvlem.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
6 | fprodsubrecnncnvlem.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 − 𝑥)) | |
7 | 3, 4, 5, 6 | fprodsub2cncf 40119 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (ℂ–cn→ℂ)) |
8 | 1rp 11836 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 1 ∈ ℝ+) |
10 | nnrp 11842 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+) | |
11 | 9, 10 | rpdivcld 11889 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+) |
12 | 11 | rpcnd 11874 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℂ) |
13 | 12 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℂ) |
14 | fprodsubrecnncnvlem.g | . . . 4 ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) | |
15 | 13, 14 | fmptd 6385 | . . 3 ⊢ (𝜑 → 𝐺:ℕ⟶ℂ) |
16 | 1cnd 10056 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
17 | divcnv 14585 | . . . . 5 ⊢ (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0) | |
18 | 16, 17 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0) |
19 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))) |
20 | 19 | breq1d 4663 | . . . 4 ⊢ (𝜑 → (𝐺 ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)) |
21 | 18, 20 | mpbird 247 | . . 3 ⊢ (𝜑 → 𝐺 ⇝ 0) |
22 | 0cnd 10033 | . . 3 ⊢ (𝜑 → 0 ∈ ℂ) | |
23 | 1, 2, 7, 15, 21, 22 | climcncf 22703 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ⇝ (𝐹‘0)) |
24 | nfv 1843 | . . . . . . . 8 ⊢ Ⅎ𝑘 𝑥 ∈ ℂ | |
25 | 3, 24 | nfan 1828 | . . . . . . 7 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ ℂ) |
26 | 4 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ Fin) |
27 | 5 | adantlr 751 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
28 | simplr 792 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝐴) → 𝑥 ∈ ℂ) | |
29 | 27, 28 | subcld 10392 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝐴) → (𝐵 − 𝑥) ∈ ℂ) |
30 | 25, 26, 29 | fprodclf 14723 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ∏𝑘 ∈ 𝐴 (𝐵 − 𝑥) ∈ ℂ) |
31 | 30, 6 | fmptd 6385 | . . . . 5 ⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
32 | fcompt 6400 | . . . . 5 ⊢ ((𝐹:ℂ⟶ℂ ∧ 𝐺:ℕ⟶ℂ) → (𝐹 ∘ 𝐺) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺‘𝑛)))) | |
33 | 31, 15, 32 | syl2anc 693 | . . . 4 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺‘𝑛)))) |
34 | fprodsubrecnncnvlem.s | . . . . . 6 ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 − (1 / 𝑛))) | |
35 | 34 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 − (1 / 𝑛)))) |
36 | id 22 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ) | |
37 | 14 | fvmpt2 6291 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ ℕ ∧ (1 / 𝑛) ∈ ℂ) → (𝐺‘𝑛) = (1 / 𝑛)) |
38 | 36, 12, 37 | syl2anc 693 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → (𝐺‘𝑛) = (1 / 𝑛)) |
39 | 38 | fveq2d 6195 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ → (𝐹‘(𝐺‘𝑛)) = (𝐹‘(1 / 𝑛))) |
40 | 39 | adantl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝐺‘𝑛)) = (𝐹‘(1 / 𝑛))) |
41 | 6 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 − 𝑥))) |
42 | oveq2 6658 | . . . . . . . . . 10 ⊢ (𝑥 = (1 / 𝑛) → (𝐵 − 𝑥) = (𝐵 − (1 / 𝑛))) | |
43 | 42 | prodeq2ad 39824 | . . . . . . . . 9 ⊢ (𝑥 = (1 / 𝑛) → ∏𝑘 ∈ 𝐴 (𝐵 − 𝑥) = ∏𝑘 ∈ 𝐴 (𝐵 − (1 / 𝑛))) |
44 | 43 | adantl 482 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 = (1 / 𝑛)) → ∏𝑘 ∈ 𝐴 (𝐵 − 𝑥) = ∏𝑘 ∈ 𝐴 (𝐵 − (1 / 𝑛))) |
45 | prodex 14637 | . . . . . . . . 9 ⊢ ∏𝑘 ∈ 𝐴 (𝐵 − (1 / 𝑛)) ∈ V | |
46 | 45 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∏𝑘 ∈ 𝐴 (𝐵 − (1 / 𝑛)) ∈ V) |
47 | 41, 44, 13, 46 | fvmptd 6288 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘(1 / 𝑛)) = ∏𝑘 ∈ 𝐴 (𝐵 − (1 / 𝑛))) |
48 | 40, 47 | eqtr2d 2657 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∏𝑘 ∈ 𝐴 (𝐵 − (1 / 𝑛)) = (𝐹‘(𝐺‘𝑛))) |
49 | 48 | mpteq2dva 4744 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 − (1 / 𝑛))) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺‘𝑛)))) |
50 | 35, 49 | eqtrd 2656 | . . . 4 ⊢ (𝜑 → 𝑆 = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺‘𝑛)))) |
51 | 33, 50 | eqtr4d 2659 | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = 𝑆) |
52 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 − 𝑥))) |
53 | nfv 1843 | . . . . . . 7 ⊢ Ⅎ𝑘 𝑥 = 0 | |
54 | 3, 53 | nfan 1828 | . . . . . 6 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑥 = 0) |
55 | oveq2 6658 | . . . . . . . . 9 ⊢ (𝑥 = 0 → (𝐵 − 𝑥) = (𝐵 − 0)) | |
56 | 55 | ad2antlr 763 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 = 0) ∧ 𝑘 ∈ 𝐴) → (𝐵 − 𝑥) = (𝐵 − 0)) |
57 | 5 | subid1d 10381 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 − 0) = 𝐵) |
58 | 57 | adantlr 751 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 = 0) ∧ 𝑘 ∈ 𝐴) → (𝐵 − 0) = 𝐵) |
59 | 56, 58 | eqtrd 2656 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 = 0) ∧ 𝑘 ∈ 𝐴) → (𝐵 − 𝑥) = 𝐵) |
60 | 59 | ex 450 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 0) → (𝑘 ∈ 𝐴 → (𝐵 − 𝑥) = 𝐵)) |
61 | 54, 60 | ralrimi 2957 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 0) → ∀𝑘 ∈ 𝐴 (𝐵 − 𝑥) = 𝐵) |
62 | 61 | prodeq2d 14652 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 0) → ∏𝑘 ∈ 𝐴 (𝐵 − 𝑥) = ∏𝑘 ∈ 𝐴 𝐵) |
63 | prodex 14637 | . . . . 5 ⊢ ∏𝑘 ∈ 𝐴 𝐵 ∈ V | |
64 | 63 | a1i 11 | . . . 4 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ V) |
65 | 52, 62, 22, 64 | fvmptd 6288 | . . 3 ⊢ (𝜑 → (𝐹‘0) = ∏𝑘 ∈ 𝐴 𝐵) |
66 | 51, 65 | breq12d 4666 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) ⇝ (𝐹‘0) ↔ 𝑆 ⇝ ∏𝑘 ∈ 𝐴 𝐵)) |
67 | 23, 66 | mpbid 222 | 1 ⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 Ⅎwnf 1708 ∈ wcel 1990 Vcvv 3200 class class class wbr 4653 ↦ cmpt 4729 ∘ ccom 5118 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 Fincfn 7955 ℂcc 9934 0cc0 9936 1c1 9937 − cmin 10266 / cdiv 10684 ℕcn 11020 ℝ+crp 11832 ⇝ cli 14215 ∏cprod 14635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-fi 8317 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-rlim 14220 df-prod 14636 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-hom 15966 df-cco 15967 df-rest 16083 df-topn 16084 df-0g 16102 df-gsum 16103 df-topgen 16104 df-pt 16105 df-prds 16108 df-xrs 16162 df-qtop 16167 df-imas 16168 df-xps 16170 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-mulg 17541 df-cntz 17750 df-cmn 18195 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-cnfld 19747 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cn 21031 df-cnp 21032 df-tx 21365 df-hmeo 21558 df-xms 22125 df-ms 22126 df-tms 22127 df-cncf 22681 |
This theorem is referenced by: fprodsubrecnncnv 40122 |
Copyright terms: Public domain | W3C validator |