![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ptfinfin | Structured version Visualization version GIF version |
Description: A point covered by a point-finite cover is only covered by finitely many elements. (Contributed by Jeff Hankins, 21-Jan-2010.) |
Ref | Expression |
---|---|
ptfinfin.1 | ⊢ 𝑋 = ∪ 𝐴 |
Ref | Expression |
---|---|
ptfinfin | ⊢ ((𝐴 ∈ PtFin ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ptfinfin.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐴 | |
2 | 1 | isptfin 21319 | . . . 4 ⊢ (𝐴 ∈ PtFin → (𝐴 ∈ PtFin ↔ ∀𝑝 ∈ 𝑋 {𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥} ∈ Fin)) |
3 | 2 | ibi 256 | . . 3 ⊢ (𝐴 ∈ PtFin → ∀𝑝 ∈ 𝑋 {𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥} ∈ Fin) |
4 | eleq1 2689 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ∈ 𝑥 ↔ 𝑃 ∈ 𝑥)) | |
5 | 4 | rabbidv 3189 | . . . . 5 ⊢ (𝑝 = 𝑃 → {𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥} = {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥}) |
6 | 5 | eleq1d 2686 | . . . 4 ⊢ (𝑝 = 𝑃 → ({𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥} ∈ Fin ↔ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin)) |
7 | 6 | rspccv 3306 | . . 3 ⊢ (∀𝑝 ∈ 𝑋 {𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥} ∈ Fin → (𝑃 ∈ 𝑋 → {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin)) |
8 | 3, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ PtFin → (𝑃 ∈ 𝑋 → {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin)) |
9 | 8 | imp 445 | 1 ⊢ ((𝐴 ∈ PtFin ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 {crab 2916 ∪ cuni 4436 Fincfn 7955 PtFincptfin 21306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-uni 4437 df-ptfin 21309 |
This theorem is referenced by: locfindis 21333 comppfsc 21335 |
Copyright terms: Public domain | W3C validator |