MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  locfindis Structured version   Visualization version   GIF version

Theorem locfindis 21333
Description: The locally finite covers of a discrete space are precisely the point-finite covers. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
locfindis.1 𝑌 = 𝐶
Assertion
Ref Expression
locfindis (𝐶 ∈ (LocFin‘𝒫 𝑋) ↔ (𝐶 ∈ PtFin ∧ 𝑋 = 𝑌))

Proof of Theorem locfindis
Dummy variables 𝑥 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfinpfin 21327 . . 3 (𝐶 ∈ (LocFin‘𝒫 𝑋) → 𝐶 ∈ PtFin)
2 unipw 4918 . . . . 5 𝒫 𝑋 = 𝑋
32eqcomi 2631 . . . 4 𝑋 = 𝒫 𝑋
4 locfindis.1 . . . 4 𝑌 = 𝐶
53, 4locfinbas 21325 . . 3 (𝐶 ∈ (LocFin‘𝒫 𝑋) → 𝑋 = 𝑌)
61, 5jca 554 . 2 (𝐶 ∈ (LocFin‘𝒫 𝑋) → (𝐶 ∈ PtFin ∧ 𝑋 = 𝑌))
7 simpr 477 . . . . 5 ((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌)
8 uniexg 6955 . . . . . . 7 (𝐶 ∈ PtFin → 𝐶 ∈ V)
94, 8syl5eqel 2705 . . . . . 6 (𝐶 ∈ PtFin → 𝑌 ∈ V)
109adantr 481 . . . . 5 ((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) → 𝑌 ∈ V)
117, 10eqeltrd 2701 . . . 4 ((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) → 𝑋 ∈ V)
12 distop 20799 . . . 4 (𝑋 ∈ V → 𝒫 𝑋 ∈ Top)
1311, 12syl 17 . . 3 ((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) → 𝒫 𝑋 ∈ Top)
14 snelpwi 4912 . . . . . 6 (𝑥𝑋 → {𝑥} ∈ 𝒫 𝑋)
1514adantl 482 . . . . 5 (((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → {𝑥} ∈ 𝒫 𝑋)
16 snidg 4206 . . . . . 6 (𝑥𝑋𝑥 ∈ {𝑥})
1716adantl 482 . . . . 5 (((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝑥 ∈ {𝑥})
18 simpll 790 . . . . . 6 (((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝐶 ∈ PtFin)
197eleq2d 2687 . . . . . . 7 ((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) → (𝑥𝑋𝑥𝑌))
2019biimpa 501 . . . . . 6 (((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝑥𝑌)
214ptfinfin 21322 . . . . . 6 ((𝐶 ∈ PtFin ∧ 𝑥𝑌) → {𝑠𝐶𝑥𝑠} ∈ Fin)
2218, 20, 21syl2anc 693 . . . . 5 (((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → {𝑠𝐶𝑥𝑠} ∈ Fin)
23 eleq2 2690 . . . . . . 7 (𝑦 = {𝑥} → (𝑥𝑦𝑥 ∈ {𝑥}))
24 ineq2 3808 . . . . . . . . . . 11 (𝑦 = {𝑥} → (𝑠𝑦) = (𝑠 ∩ {𝑥}))
2524neeq1d 2853 . . . . . . . . . 10 (𝑦 = {𝑥} → ((𝑠𝑦) ≠ ∅ ↔ (𝑠 ∩ {𝑥}) ≠ ∅))
26 disjsn 4246 . . . . . . . . . . 11 ((𝑠 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥𝑠)
2726necon2abii 2844 . . . . . . . . . 10 (𝑥𝑠 ↔ (𝑠 ∩ {𝑥}) ≠ ∅)
2825, 27syl6bbr 278 . . . . . . . . 9 (𝑦 = {𝑥} → ((𝑠𝑦) ≠ ∅ ↔ 𝑥𝑠))
2928rabbidv 3189 . . . . . . . 8 (𝑦 = {𝑥} → {𝑠𝐶 ∣ (𝑠𝑦) ≠ ∅} = {𝑠𝐶𝑥𝑠})
3029eleq1d 2686 . . . . . . 7 (𝑦 = {𝑥} → ({𝑠𝐶 ∣ (𝑠𝑦) ≠ ∅} ∈ Fin ↔ {𝑠𝐶𝑥𝑠} ∈ Fin))
3123, 30anbi12d 747 . . . . . 6 (𝑦 = {𝑥} → ((𝑥𝑦 ∧ {𝑠𝐶 ∣ (𝑠𝑦) ≠ ∅} ∈ Fin) ↔ (𝑥 ∈ {𝑥} ∧ {𝑠𝐶𝑥𝑠} ∈ Fin)))
3231rspcev 3309 . . . . 5 (({𝑥} ∈ 𝒫 𝑋 ∧ (𝑥 ∈ {𝑥} ∧ {𝑠𝐶𝑥𝑠} ∈ Fin)) → ∃𝑦 ∈ 𝒫 𝑋(𝑥𝑦 ∧ {𝑠𝐶 ∣ (𝑠𝑦) ≠ ∅} ∈ Fin))
3315, 17, 22, 32syl12anc 1324 . . . 4 (((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → ∃𝑦 ∈ 𝒫 𝑋(𝑥𝑦 ∧ {𝑠𝐶 ∣ (𝑠𝑦) ≠ ∅} ∈ Fin))
3433ralrimiva 2966 . . 3 ((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) → ∀𝑥𝑋𝑦 ∈ 𝒫 𝑋(𝑥𝑦 ∧ {𝑠𝐶 ∣ (𝑠𝑦) ≠ ∅} ∈ Fin))
353, 4islocfin 21320 . . 3 (𝐶 ∈ (LocFin‘𝒫 𝑋) ↔ (𝒫 𝑋 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑦 ∈ 𝒫 𝑋(𝑥𝑦 ∧ {𝑠𝐶 ∣ (𝑠𝑦) ≠ ∅} ∈ Fin)))
3613, 7, 34, 35syl3anbrc 1246 . 2 ((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) → 𝐶 ∈ (LocFin‘𝒫 𝑋))
376, 36impbii 199 1 (𝐶 ∈ (LocFin‘𝒫 𝑋) ↔ (𝐶 ∈ PtFin ∧ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cin 3573  c0 3915  𝒫 cpw 4158  {csn 4177   cuni 4436  cfv 5888  Fincfn 7955  Topctop 20698  PtFincptfin 21306  LocFinclocfin 21307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-er 7742  df-en 7956  df-fin 7959  df-top 20699  df-ptfin 21309  df-locfin 21310
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator