| Step | Hyp | Ref
| Expression |
| 1 | | elpwi 4168 |
. . . 4
⊢ (𝑐 ∈ 𝒫 𝐽 → 𝑐 ⊆ 𝐽) |
| 2 | | comppfsc.1 |
. . . . . . 7
⊢ 𝑋 = ∪
𝐽 |
| 3 | 2 | cmpcov 21192 |
. . . . . 6
⊢ ((𝐽 ∈ Comp ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) |
| 4 | | elfpw 8268 |
. . . . . . . 8
⊢ (𝑑 ∈ (𝒫 𝑐 ∩ Fin) ↔ (𝑑 ⊆ 𝑐 ∧ 𝑑 ∈ Fin)) |
| 5 | | finptfin 21321 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ Fin → 𝑑 ∈ PtFin) |
| 6 | 5 | anim1i 592 |
. . . . . . . . . 10
⊢ ((𝑑 ∈ Fin ∧ (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)) → (𝑑 ∈ PtFin ∧ (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑))) |
| 7 | 6 | anassrs 680 |
. . . . . . . . 9
⊢ (((𝑑 ∈ Fin ∧ 𝑑 ⊆ 𝑐) ∧ 𝑋 = ∪ 𝑑) → (𝑑 ∈ PtFin ∧ (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑))) |
| 8 | 7 | ancom1s 847 |
. . . . . . . 8
⊢ (((𝑑 ⊆ 𝑐 ∧ 𝑑 ∈ Fin) ∧ 𝑋 = ∪ 𝑑) → (𝑑 ∈ PtFin ∧ (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑))) |
| 9 | 4, 8 | sylanb 489 |
. . . . . . 7
⊢ ((𝑑 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑋 = ∪
𝑑) → (𝑑 ∈ PtFin ∧ (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑))) |
| 10 | 9 | reximi2 3010 |
. . . . . 6
⊢
(∃𝑑 ∈
(𝒫 𝑐 ∩
Fin)𝑋 = ∪ 𝑑
→ ∃𝑑 ∈
PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)) |
| 11 | 3, 10 | syl 17 |
. . . . 5
⊢ ((𝐽 ∈ Comp ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)) |
| 12 | 11 | 3exp 1264 |
. . . 4
⊢ (𝐽 ∈ Comp → (𝑐 ⊆ 𝐽 → (𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)))) |
| 13 | 1, 12 | syl5 34 |
. . 3
⊢ (𝐽 ∈ Comp → (𝑐 ∈ 𝒫 𝐽 → (𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)))) |
| 14 | 13 | ralrimiv 2965 |
. 2
⊢ (𝐽 ∈ Comp →
∀𝑐 ∈ 𝒫
𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑))) |
| 15 | | elpwi 4168 |
. . . . . . 7
⊢ (𝑎 ∈ 𝒫 𝐽 → 𝑎 ⊆ 𝐽) |
| 16 | | 0elpw 4834 |
. . . . . . . . . . . 12
⊢ ∅
∈ 𝒫 𝑎 |
| 17 | | 0fin 8188 |
. . . . . . . . . . . 12
⊢ ∅
∈ Fin |
| 18 | | elin 3796 |
. . . . . . . . . . . 12
⊢ (∅
∈ (𝒫 𝑎 ∩
Fin) ↔ (∅ ∈ 𝒫 𝑎 ∧ ∅ ∈ Fin)) |
| 19 | 16, 17, 18 | mpbir2an 955 |
. . . . . . . . . . 11
⊢ ∅
∈ (𝒫 𝑎 ∩
Fin) |
| 20 | | unieq 4444 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = ∅ → ∪ 𝑏 =
∪ ∅) |
| 21 | | uni0 4465 |
. . . . . . . . . . . . . 14
⊢ ∪ ∅ = ∅ |
| 22 | 20, 21 | syl6eq 2672 |
. . . . . . . . . . . . 13
⊢ (𝑏 = ∅ → ∪ 𝑏 =
∅) |
| 23 | 22 | eqeq2d 2632 |
. . . . . . . . . . . 12
⊢ (𝑏 = ∅ → (𝑋 = ∪
𝑏 ↔ 𝑋 = ∅)) |
| 24 | 23 | rspcev 3309 |
. . . . . . . . . . 11
⊢ ((∅
∈ (𝒫 𝑎 ∩
Fin) ∧ 𝑋 = ∅)
→ ∃𝑏 ∈
(𝒫 𝑎 ∩
Fin)𝑋 = ∪ 𝑏) |
| 25 | 19, 24 | mpan 706 |
. . . . . . . . . 10
⊢ (𝑋 = ∅ → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) |
| 26 | 25 | a1d 25 |
. . . . . . . . 9
⊢ (𝑋 = ∅ → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏)) |
| 27 | 26 | a1i 11 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) → (𝑋 = ∅ → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏))) |
| 28 | | n0 3931 |
. . . . . . . . 9
⊢ (𝑋 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝑋) |
| 29 | | simp2 1062 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) → 𝑋 = ∪ 𝑎) |
| 30 | 29 | eleq2d 2687 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) → (𝑥 ∈ 𝑋 ↔ 𝑥 ∈ ∪ 𝑎)) |
| 31 | 30 | biimpd 219 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) → (𝑥 ∈ 𝑋 → 𝑥 ∈ ∪ 𝑎)) |
| 32 | | eluni2 4440 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ∪ 𝑎
↔ ∃𝑠 ∈
𝑎 𝑥 ∈ 𝑠) |
| 33 | 31, 32 | syl6ib 241 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) → (𝑥 ∈ 𝑋 → ∃𝑠 ∈ 𝑎 𝑥 ∈ 𝑠)) |
| 34 | | simpl3 1066 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → 𝑎 ⊆ 𝐽) |
| 35 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → 𝑠 ∈ 𝑎) |
| 36 | 34, 35 | sseldd 3604 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → 𝑠 ∈ 𝐽) |
| 37 | | elssuni 4467 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 ∈ 𝐽 → 𝑠 ⊆ ∪ 𝐽) |
| 38 | 37, 2 | syl6sseqr 3652 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ 𝐽 → 𝑠 ⊆ 𝑋) |
| 39 | 36, 38 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → 𝑠 ⊆ 𝑋) |
| 40 | 39 | ralrimivw 2967 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → ∀𝑝 ∈ 𝑎 𝑠 ⊆ 𝑋) |
| 41 | | iunss 4561 |
. . . . . . . . . . . . . . . . . 18
⊢ (∪ 𝑝 ∈ 𝑎 𝑠 ⊆ 𝑋 ↔ ∀𝑝 ∈ 𝑎 𝑠 ⊆ 𝑋) |
| 42 | 40, 41 | sylibr 224 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → ∪
𝑝 ∈ 𝑎 𝑠 ⊆ 𝑋) |
| 43 | | ssequn1 3783 |
. . . . . . . . . . . . . . . . 17
⊢ (∪ 𝑝 ∈ 𝑎 𝑠 ⊆ 𝑋 ↔ (∪
𝑝 ∈ 𝑎 𝑠 ∪ 𝑋) = 𝑋) |
| 44 | 42, 43 | sylib 208 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → (∪ 𝑝 ∈ 𝑎 𝑠 ∪ 𝑋) = 𝑋) |
| 45 | | simpl2 1065 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → 𝑋 = ∪ 𝑎) |
| 46 | | uniiun 4573 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ 𝑎 =
∪ 𝑝 ∈ 𝑎 𝑝 |
| 47 | 45, 46 | syl6eq 2672 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → 𝑋 = ∪ 𝑝 ∈ 𝑎 𝑝) |
| 48 | 47 | uneq2d 3767 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → (∪ 𝑝 ∈ 𝑎 𝑠 ∪ 𝑋) = (∪
𝑝 ∈ 𝑎 𝑠 ∪ ∪
𝑝 ∈ 𝑎 𝑝)) |
| 49 | 44, 48 | eqtr3d 2658 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → 𝑋 = (∪
𝑝 ∈ 𝑎 𝑠 ∪ ∪
𝑝 ∈ 𝑎 𝑝)) |
| 50 | | iunun 4604 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑝 ∈ 𝑎 (𝑠 ∪ 𝑝) = (∪
𝑝 ∈ 𝑎 𝑠 ∪ ∪
𝑝 ∈ 𝑎 𝑝) |
| 51 | | vex 3203 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑠 ∈ V |
| 52 | | vex 3203 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑝 ∈ V |
| 53 | 51, 52 | unex 6956 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 ∪ 𝑝) ∈ V |
| 54 | 53 | dfiun3 5380 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑝 ∈ 𝑎 (𝑠 ∪ 𝑝) = ∪ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) |
| 55 | 50, 54 | eqtr3i 2646 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑝 ∈ 𝑎 𝑠 ∪ ∪
𝑝 ∈ 𝑎 𝑝) = ∪ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) |
| 56 | 49, 55 | syl6eq 2672 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → 𝑋 = ∪ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝))) |
| 57 | | simpll1 1100 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ 𝑝 ∈ 𝑎) → 𝐽 ∈ Top) |
| 58 | 36 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ 𝑝 ∈ 𝑎) → 𝑠 ∈ 𝐽) |
| 59 | 34 | sselda 3603 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ 𝑝 ∈ 𝑎) → 𝑝 ∈ 𝐽) |
| 60 | | unopn 20708 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐽 ∈ Top ∧ 𝑠 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) → (𝑠 ∪ 𝑝) ∈ 𝐽) |
| 61 | 57, 58, 59, 60 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ 𝑝 ∈ 𝑎) → (𝑠 ∪ 𝑝) ∈ 𝐽) |
| 62 | | eqid 2622 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) = (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) |
| 63 | 61, 62 | fmptd 6385 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)):𝑎⟶𝐽) |
| 64 | | frn 6053 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)):𝑎⟶𝐽 → ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ⊆ 𝐽) |
| 65 | 63, 64 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ⊆ 𝐽) |
| 66 | | elpw2g 4827 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐽 ∈ Top → (ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∈ 𝒫 𝐽 ↔ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ⊆ 𝐽)) |
| 67 | 66 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) → (ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∈ 𝒫 𝐽 ↔ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ⊆ 𝐽)) |
| 68 | 67 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → (ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∈ 𝒫 𝐽 ↔ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ⊆ 𝐽)) |
| 69 | 65, 68 | mpbird 247 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∈ 𝒫 𝐽) |
| 70 | | unieq 4444 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) → ∪ 𝑐 = ∪
ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝))) |
| 71 | 70 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) → (𝑋 = ∪ 𝑐 ↔ 𝑋 = ∪ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)))) |
| 72 | | sseq2 3627 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) → (𝑑 ⊆ 𝑐 ↔ 𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)))) |
| 73 | 72 | anbi1d 741 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) → ((𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑) ↔ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑))) |
| 74 | 73 | rexbidv 3052 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) → (∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑) ↔ ∃𝑑 ∈ PtFin (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑))) |
| 75 | 71, 74 | imbi12d 334 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) → ((𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)) ↔ (𝑋 = ∪ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) → ∃𝑑 ∈ PtFin (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)))) |
| 76 | 75 | rspcv 3305 |
. . . . . . . . . . . . . . 15
⊢ (ran
(𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∈ 𝒫 𝐽 → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)) → (𝑋 = ∪ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) → ∃𝑑 ∈ PtFin (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)))) |
| 77 | 69, 76 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)) → (𝑋 = ∪ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) → ∃𝑑 ∈ PtFin (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)))) |
| 78 | 56, 77 | mpid 44 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)) → ∃𝑑 ∈ PtFin (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑))) |
| 79 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → 𝑥 ∈ 𝑠) |
| 80 | | ssel2 3598 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑎 ⊆ 𝐽 ∧ 𝑠 ∈ 𝑎) → 𝑠 ∈ 𝐽) |
| 81 | 80 | 3ad2antl3 1225 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ 𝑠 ∈ 𝑎) → 𝑠 ∈ 𝐽) |
| 82 | 81 | adantrr 753 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → 𝑠 ∈ 𝐽) |
| 83 | | elunii 4441 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ 𝑠 ∧ 𝑠 ∈ 𝐽) → 𝑥 ∈ ∪ 𝐽) |
| 84 | 79, 82, 83 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → 𝑥 ∈ ∪ 𝐽) |
| 85 | 84, 2 | syl6eleqr 2712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → 𝑥 ∈ 𝑋) |
| 86 | 85 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) → 𝑥 ∈ 𝑋) |
| 87 | | simprr 796 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) → 𝑋 = ∪ 𝑑) |
| 88 | 86, 87 | eleqtrd 2703 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) → 𝑥 ∈ ∪ 𝑑) |
| 89 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∪ 𝑑 =
∪ 𝑑 |
| 90 | 89 | ptfinfin 21322 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑑 ∈ PtFin ∧ 𝑥 ∈ ∪ 𝑑)
→ {𝑧 ∈ 𝑑 ∣ 𝑥 ∈ 𝑧} ∈ Fin) |
| 91 | 90 | expcom 451 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ∪ 𝑑
→ (𝑑 ∈ PtFin
→ {𝑧 ∈ 𝑑 ∣ 𝑥 ∈ 𝑧} ∈ Fin)) |
| 92 | 88, 91 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) → (𝑑 ∈ PtFin → {𝑧 ∈ 𝑑 ∣ 𝑥 ∈ 𝑧} ∈ Fin)) |
| 93 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) → 𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝))) |
| 94 | | elun1 3780 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ 𝑠 → 𝑥 ∈ (𝑠 ∪ 𝑝)) |
| 95 | 94 | ad2antll 765 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → 𝑥 ∈ (𝑠 ∪ 𝑝)) |
| 96 | 95 | ralrimivw 2967 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → ∀𝑝 ∈ 𝑎 𝑥 ∈ (𝑠 ∪ 𝑝)) |
| 97 | 53 | rgenw 2924 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
∀𝑝 ∈
𝑎 (𝑠 ∪ 𝑝) ∈ V |
| 98 | | eleq2 2690 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 = (𝑠 ∪ 𝑝) → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ (𝑠 ∪ 𝑝))) |
| 99 | 62, 98 | ralrnmpt 6368 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑝 ∈
𝑎 (𝑠 ∪ 𝑝) ∈ V → (∀𝑧 ∈ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝))𝑥 ∈ 𝑧 ↔ ∀𝑝 ∈ 𝑎 𝑥 ∈ (𝑠 ∪ 𝑝))) |
| 100 | 97, 99 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑧 ∈
ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝))𝑥 ∈ 𝑧 ↔ ∀𝑝 ∈ 𝑎 𝑥 ∈ (𝑠 ∪ 𝑝)) |
| 101 | 96, 100 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → ∀𝑧 ∈ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝))𝑥 ∈ 𝑧) |
| 102 | 101 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) → ∀𝑧 ∈ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝))𝑥 ∈ 𝑧) |
| 103 | | ssralv 3666 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) → (∀𝑧 ∈ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝))𝑥 ∈ 𝑧 → ∀𝑧 ∈ 𝑑 𝑥 ∈ 𝑧)) |
| 104 | 93, 102, 103 | sylc 65 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) → ∀𝑧 ∈ 𝑑 𝑥 ∈ 𝑧) |
| 105 | | rabid2 3118 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 = {𝑧 ∈ 𝑑 ∣ 𝑥 ∈ 𝑧} ↔ ∀𝑧 ∈ 𝑑 𝑥 ∈ 𝑧) |
| 106 | 104, 105 | sylibr 224 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) → 𝑑 = {𝑧 ∈ 𝑑 ∣ 𝑥 ∈ 𝑧}) |
| 107 | 106 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) → (𝑑 ∈ Fin ↔ {𝑧 ∈ 𝑑 ∣ 𝑥 ∈ 𝑧} ∈ Fin)) |
| 108 | 107 | biimprd 238 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) → ({𝑧 ∈ 𝑑 ∣ 𝑥 ∈ 𝑧} ∈ Fin → 𝑑 ∈ Fin)) |
| 109 | 62 | rnmpt 5371 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ran
(𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) = {𝑞 ∣ ∃𝑝 ∈ 𝑎 𝑞 = (𝑠 ∪ 𝑝)} |
| 110 | 93, 109 | syl6sseq 3651 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) → 𝑑 ⊆ {𝑞 ∣ ∃𝑝 ∈ 𝑎 𝑞 = (𝑠 ∪ 𝑝)}) |
| 111 | | ssabral 3673 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 ⊆ {𝑞 ∣ ∃𝑝 ∈ 𝑎 𝑞 = (𝑠 ∪ 𝑝)} ↔ ∀𝑞 ∈ 𝑑 ∃𝑝 ∈ 𝑎 𝑞 = (𝑠 ∪ 𝑝)) |
| 112 | 110, 111 | sylib 208 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) → ∀𝑞 ∈ 𝑑 ∃𝑝 ∈ 𝑎 𝑞 = (𝑠 ∪ 𝑝)) |
| 113 | | uneq2 3761 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 = (𝑓‘𝑞) → (𝑠 ∪ 𝑝) = (𝑠 ∪ (𝑓‘𝑞))) |
| 114 | 113 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = (𝑓‘𝑞) → (𝑞 = (𝑠 ∪ 𝑝) ↔ 𝑞 = (𝑠 ∪ (𝑓‘𝑞)))) |
| 115 | 114 | ac6sfi 8204 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑑 ∈ Fin ∧ ∀𝑞 ∈ 𝑑 ∃𝑝 ∈ 𝑎 𝑞 = (𝑠 ∪ 𝑝)) → ∃𝑓(𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞)))) |
| 116 | 115 | expcom 451 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑞 ∈
𝑑 ∃𝑝 ∈ 𝑎 𝑞 = (𝑠 ∪ 𝑝) → (𝑑 ∈ Fin → ∃𝑓(𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) |
| 117 | 112, 116 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) → (𝑑 ∈ Fin → ∃𝑓(𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) |
| 118 | | frn 6053 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓:𝑑⟶𝑎 → ran 𝑓 ⊆ 𝑎) |
| 119 | 118 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))) → ran 𝑓 ⊆ 𝑎) |
| 120 | 119 | ad2antll 765 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → ran 𝑓 ⊆ 𝑎) |
| 121 | 35 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → 𝑠 ∈ 𝑎) |
| 122 | 121 | snssd 4340 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → {𝑠} ⊆ 𝑎) |
| 123 | 120, 122 | unssd 3789 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → (ran 𝑓 ∪ {𝑠}) ⊆ 𝑎) |
| 124 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → 𝑑 ∈ Fin) |
| 125 | | simprrl 804 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → 𝑓:𝑑⟶𝑎) |
| 126 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑓:𝑑⟶𝑎 → 𝑓 Fn 𝑑) |
| 127 | 125, 126 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → 𝑓 Fn 𝑑) |
| 128 | | dffn4 6121 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 Fn 𝑑 ↔ 𝑓:𝑑–onto→ran 𝑓) |
| 129 | 127, 128 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → 𝑓:𝑑–onto→ran 𝑓) |
| 130 | | fofi 8252 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑑 ∈ Fin ∧ 𝑓:𝑑–onto→ran 𝑓) → ran 𝑓 ∈ Fin) |
| 131 | 124, 129,
130 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → ran 𝑓 ∈ Fin) |
| 132 | | snfi 8038 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ {𝑠} ∈ Fin |
| 133 | | unfi 8227 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((ran
𝑓 ∈ Fin ∧ {𝑠} ∈ Fin) → (ran 𝑓 ∪ {𝑠}) ∈ Fin) |
| 134 | 131, 132,
133 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → (ran 𝑓 ∪ {𝑠}) ∈ Fin) |
| 135 | | elfpw 8268 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((ran
𝑓 ∪ {𝑠}) ∈ (𝒫 𝑎 ∩ Fin) ↔ ((ran 𝑓 ∪ {𝑠}) ⊆ 𝑎 ∧ (ran 𝑓 ∪ {𝑠}) ∈ Fin)) |
| 136 | 123, 134,
135 | sylanbrc 698 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → (ran 𝑓 ∪ {𝑠}) ∈ (𝒫 𝑎 ∩ Fin)) |
| 137 | | simplrr 801 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → 𝑋 = ∪ 𝑑) |
| 138 | | uniiun 4573 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ∪ 𝑑 =
∪ 𝑞 ∈ 𝑑 𝑞 |
| 139 | | simprrr 805 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))) |
| 140 | | iuneq2 4537 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(∀𝑞 ∈
𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞)) → ∪
𝑞 ∈ 𝑑 𝑞 = ∪ 𝑞 ∈ 𝑑 (𝑠 ∪ (𝑓‘𝑞))) |
| 141 | 139, 140 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → ∪ 𝑞 ∈ 𝑑 𝑞 = ∪ 𝑞 ∈ 𝑑 (𝑠 ∪ (𝑓‘𝑞))) |
| 142 | 138, 141 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → ∪
𝑑 = ∪ 𝑞 ∈ 𝑑 (𝑠 ∪ (𝑓‘𝑞))) |
| 143 | 137, 142 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → 𝑋 = ∪ 𝑞 ∈ 𝑑 (𝑠 ∪ (𝑓‘𝑞))) |
| 144 | | ssun2 3777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ {𝑠} ⊆ (ran 𝑓 ∪ {𝑠}) |
| 145 | | vsnid 4209 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 𝑠 ∈ {𝑠} |
| 146 | 144, 145 | sselii 3600 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 𝑠 ∈ (ran 𝑓 ∪ {𝑠}) |
| 147 | | elssuni 4467 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑠 ∈ (ran 𝑓 ∪ {𝑠}) → 𝑠 ⊆ ∪ (ran
𝑓 ∪ {𝑠})) |
| 148 | 146, 147 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝑠 ⊆ ∪ (ran 𝑓 ∪ {𝑠}) |
| 149 | | fvssunirn 6217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑓‘𝑞) ⊆ ∪ ran
𝑓 |
| 150 | | ssun1 3776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ran 𝑓 ⊆ (ran 𝑓 ∪ {𝑠}) |
| 151 | 150 | unissi 4461 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ∪ ran 𝑓 ⊆ ∪ (ran
𝑓 ∪ {𝑠}) |
| 152 | 149, 151 | sstri 3612 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑓‘𝑞) ⊆ ∪ (ran
𝑓 ∪ {𝑠}) |
| 153 | 148, 152 | unssi 3788 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑠 ∪ (𝑓‘𝑞)) ⊆ ∪ (ran
𝑓 ∪ {𝑠}) |
| 154 | 153 | rgenw 2924 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
∀𝑞 ∈
𝑑 (𝑠 ∪ (𝑓‘𝑞)) ⊆ ∪ (ran
𝑓 ∪ {𝑠}) |
| 155 | | iunss 4561 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (∪ 𝑞 ∈ 𝑑 (𝑠 ∪ (𝑓‘𝑞)) ⊆ ∪ (ran
𝑓 ∪ {𝑠}) ↔ ∀𝑞 ∈ 𝑑 (𝑠 ∪ (𝑓‘𝑞)) ⊆ ∪ (ran
𝑓 ∪ {𝑠})) |
| 156 | 154, 155 | mpbir 221 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ∪ 𝑞 ∈ 𝑑 (𝑠 ∪ (𝑓‘𝑞)) ⊆ ∪ (ran
𝑓 ∪ {𝑠}) |
| 157 | 143, 156 | syl6eqss 3655 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → 𝑋 ⊆ ∪ (ran
𝑓 ∪ {𝑠})) |
| 158 | 34 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → 𝑎 ⊆ 𝐽) |
| 159 | 120, 158 | sstrd 3613 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → ran 𝑓 ⊆ 𝐽) |
| 160 | 36 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → 𝑠 ∈ 𝐽) |
| 161 | 160 | snssd 4340 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → {𝑠} ⊆ 𝐽) |
| 162 | 159, 161 | unssd 3789 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → (ran 𝑓 ∪ {𝑠}) ⊆ 𝐽) |
| 163 | | uniss 4458 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((ran
𝑓 ∪ {𝑠}) ⊆ 𝐽 → ∪ (ran
𝑓 ∪ {𝑠}) ⊆ ∪ 𝐽) |
| 164 | 163, 2 | syl6sseqr 3652 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((ran
𝑓 ∪ {𝑠}) ⊆ 𝐽 → ∪ (ran
𝑓 ∪ {𝑠}) ⊆ 𝑋) |
| 165 | 162, 164 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → ∪
(ran 𝑓 ∪ {𝑠}) ⊆ 𝑋) |
| 166 | 157, 165 | eqssd 3620 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → 𝑋 = ∪ (ran 𝑓 ∪ {𝑠})) |
| 167 | | unieq 4444 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 = (ran 𝑓 ∪ {𝑠}) → ∪ 𝑏 = ∪
(ran 𝑓 ∪ {𝑠})) |
| 168 | 167 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 = (ran 𝑓 ∪ {𝑠}) → (𝑋 = ∪ 𝑏 ↔ 𝑋 = ∪ (ran 𝑓 ∪ {𝑠}))) |
| 169 | 168 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((ran
𝑓 ∪ {𝑠}) ∈ (𝒫 𝑎 ∩ Fin) ∧ 𝑋 = ∪ (ran 𝑓 ∪ {𝑠})) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) |
| 170 | 136, 166,
169 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))))) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) |
| 171 | 170 | expr 643 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ 𝑑 ∈ Fin) → ((𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏)) |
| 172 | 171 | exlimdv 1861 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐽 ∈ Top
∧ 𝑋 = ∪ 𝑎
∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) ∧ 𝑑 ∈ Fin) → (∃𝑓(𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏)) |
| 173 | 172 | ex 450 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) → (𝑑 ∈ Fin → (∃𝑓(𝑓:𝑑⟶𝑎 ∧ ∀𝑞 ∈ 𝑑 𝑞 = (𝑠 ∪ (𝑓‘𝑞))) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏))) |
| 174 | 117, 173 | mpdd 43 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) → (𝑑 ∈ Fin → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏)) |
| 175 | 92, 108, 174 | 3syld 60 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) ∧ (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑)) → (𝑑 ∈ PtFin → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏)) |
| 176 | 175 | ex 450 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → ((𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑) → (𝑑 ∈ PtFin → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏))) |
| 177 | 176 | com23 86 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → (𝑑 ∈ PtFin → ((𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏))) |
| 178 | 177 | rexlimdv 3030 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → (∃𝑑 ∈ PtFin (𝑑 ⊆ ran (𝑝 ∈ 𝑎 ↦ (𝑠 ∪ 𝑝)) ∧ 𝑋 = ∪ 𝑑) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏)) |
| 179 | 78, 178 | syld 47 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) ∧ (𝑠 ∈ 𝑎 ∧ 𝑥 ∈ 𝑠)) → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏)) |
| 180 | 179 | rexlimdvaa 3032 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) → (∃𝑠 ∈ 𝑎 𝑥 ∈ 𝑠 → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏))) |
| 181 | 33, 180 | syld 47 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) → (𝑥 ∈ 𝑋 → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏))) |
| 182 | 181 | exlimdv 1861 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) → (∃𝑥 𝑥 ∈ 𝑋 → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏))) |
| 183 | 28, 182 | syl5bi 232 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) → (𝑋 ≠ ∅ → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏))) |
| 184 | 27, 183 | pm2.61dne 2880 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ⊆ 𝐽) → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏)) |
| 185 | 15, 184 | syl3an3 1361 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑋 = ∪
𝑎 ∧ 𝑎 ∈ 𝒫 𝐽) → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏)) |
| 186 | 185 | 3exp 1264 |
. . . . 5
⊢ (𝐽 ∈ Top → (𝑋 = ∪
𝑎 → (𝑎 ∈ 𝒫 𝐽 → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏)))) |
| 187 | 186 | com24 95 |
. . . 4
⊢ (𝐽 ∈ Top →
(∀𝑐 ∈ 𝒫
𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)) → (𝑎 ∈ 𝒫 𝐽 → (𝑋 = ∪ 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏)))) |
| 188 | 187 | ralrimdv 2968 |
. . 3
⊢ (𝐽 ∈ Top →
(∀𝑐 ∈ 𝒫
𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)) → ∀𝑎 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏))) |
| 189 | 2 | iscmp 21191 |
. . . 4
⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑎 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏))) |
| 190 | 189 | baibr 945 |
. . 3
⊢ (𝐽 ∈ Top →
(∀𝑎 ∈ 𝒫
𝐽(𝑋 = ∪ 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) ↔ 𝐽 ∈ Comp)) |
| 191 | 188, 190 | sylibd 229 |
. 2
⊢ (𝐽 ∈ Top →
(∀𝑐 ∈ 𝒫
𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)) → 𝐽 ∈ Comp)) |
| 192 | 14, 191 | impbid2 216 |
1
⊢ (𝐽 ∈ Top → (𝐽 ∈ Comp ↔
∀𝑐 ∈ 𝒫
𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)))) |