MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwnex Structured version   Visualization version   GIF version

Theorem pwnex 6968
Description: The class of all power sets is a proper class. See also snnex 6966. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
pwnex {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V
Distinct variable group:   𝑥,𝑦

Proof of Theorem pwnex
StepHypRef Expression
1 abnex 6965 . . 3 (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V)
2 df-nel 2898 . . 3 ({𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V)
31, 2sylibr 224 . 2 (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V)
4 vpwex 4849 . . 3 𝒫 𝑦 ∈ V
5 vex 3203 . . . 4 𝑦 ∈ V
65pwid 4174 . . 3 𝑦 ∈ 𝒫 𝑦
74, 6pm3.2i 471 . 2 (𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦)
83, 7mpg 1724 1 {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384  wal 1481   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wnel 2897  Vcvv 3200  𝒫 cpw 4158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-pow 4843  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-nel 2898  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-sn 4178  df-uni 4437  df-iun 4522
This theorem is referenced by:  topnex  20800
  Copyright terms: Public domain W3C validator