![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > topnex | Structured version Visualization version GIF version |
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 6968; an alternate proof uses indiscrete topologies (see indistop 20806) and the analogue of pwnex 6968 with pairs {∅, 𝑥} instead of power sets 𝒫 𝑥 (that analogue is also a consequence of abnex 6965). (Contributed by BJ, 2-May-2021.) |
Ref | Expression |
---|---|
topnex | ⊢ Top ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwnex 6968 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∉ V | |
2 | 1 | neli 2899 | . . 3 ⊢ ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V |
3 | vex 3203 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
4 | distop 20799 | . . . . . . . 8 ⊢ (𝑥 ∈ V → 𝒫 𝑥 ∈ Top) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 𝑥 ∈ Top |
6 | eleq1 2689 | . . . . . . 7 ⊢ (𝑦 = 𝒫 𝑥 → (𝑦 ∈ Top ↔ 𝒫 𝑥 ∈ Top)) | |
7 | 5, 6 | mpbiri 248 | . . . . . 6 ⊢ (𝑦 = 𝒫 𝑥 → 𝑦 ∈ Top) |
8 | 7 | exlimiv 1858 | . . . . 5 ⊢ (∃𝑥 𝑦 = 𝒫 𝑥 → 𝑦 ∈ Top) |
9 | 8 | abssi 3677 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top |
10 | ssexg 4804 | . . . 4 ⊢ (({𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top ∧ Top ∈ V) → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V) | |
11 | 9, 10 | mpan 706 | . . 3 ⊢ (Top ∈ V → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V) |
12 | 2, 11 | mto 188 | . 2 ⊢ ¬ Top ∈ V |
13 | 12 | nelir 2900 | 1 ⊢ Top ∉ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∃wex 1704 ∈ wcel 1990 {cab 2608 ∉ wnel 2897 Vcvv 3200 ⊆ wss 3574 𝒫 cpw 4158 Topctop 20698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-nel 2898 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-pw 4160 df-sn 4178 df-pr 4180 df-uni 4437 df-iun 4522 df-top 20699 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |