MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwnex Structured version   Visualization version   Unicode version

Theorem pwnex 6968
Description: The class of all power sets is a proper class. See also snnex 6966. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
pwnex  |-  { x  |  E. y  x  =  ~P y }  e/  _V
Distinct variable group:    x, y

Proof of Theorem pwnex
StepHypRef Expression
1 abnex 6965 . . 3  |-  ( A. y ( ~P y  e.  _V  /\  y  e. 
~P y )  ->  -.  { x  |  E. y  x  =  ~P y }  e.  _V )
2 df-nel 2898 . . 3  |-  ( { x  |  E. y  x  =  ~P y }  e/  _V  <->  -.  { x  |  E. y  x  =  ~P y }  e.  _V )
31, 2sylibr 224 . 2  |-  ( A. y ( ~P y  e.  _V  /\  y  e. 
~P y )  ->  { x  |  E. y  x  =  ~P y }  e/  _V )
4 vpwex 4849 . . 3  |-  ~P y  e.  _V
5 vex 3203 . . . 4  |-  y  e. 
_V
65pwid 4174 . . 3  |-  y  e. 
~P y
74, 6pm3.2i 471 . 2  |-  ( ~P y  e.  _V  /\  y  e.  ~P y
)
83, 7mpg 1724 1  |-  { x  |  E. y  x  =  ~P y }  e/  _V
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    e/ wnel 2897   _Vcvv 3200   ~Pcpw 4158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-pow 4843  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-nel 2898  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-sn 4178  df-uni 4437  df-iun 4522
This theorem is referenced by:  topnex  20800
  Copyright terms: Public domain W3C validator