MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1tr Structured version   Visualization version   GIF version

Theorem r1tr 8639
Description: The cumulative hierarchy of sets is transitive. Lemma 7T of [Enderton] p. 202. (Contributed by NM, 8-Sep-2003.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1tr Tr (𝑅1𝐴)

Proof of Theorem r1tr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 8629 . . . . . 6 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 478 . . . . 5 Lim dom 𝑅1
3 limord 5784 . . . . 5 (Lim dom 𝑅1 → Ord dom 𝑅1)
4 ordsson 6989 . . . . 5 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
52, 3, 4mp2b 10 . . . 4 dom 𝑅1 ⊆ On
65sseli 3599 . . 3 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
7 fveq2 6191 . . . . . 6 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
8 r10 8631 . . . . . 6 (𝑅1‘∅) = ∅
97, 8syl6eq 2672 . . . . 5 (𝑥 = ∅ → (𝑅1𝑥) = ∅)
10 treq 4758 . . . . 5 ((𝑅1𝑥) = ∅ → (Tr (𝑅1𝑥) ↔ Tr ∅))
119, 10syl 17 . . . 4 (𝑥 = ∅ → (Tr (𝑅1𝑥) ↔ Tr ∅))
12 fveq2 6191 . . . . 5 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
13 treq 4758 . . . . 5 ((𝑅1𝑥) = (𝑅1𝑦) → (Tr (𝑅1𝑥) ↔ Tr (𝑅1𝑦)))
1412, 13syl 17 . . . 4 (𝑥 = 𝑦 → (Tr (𝑅1𝑥) ↔ Tr (𝑅1𝑦)))
15 fveq2 6191 . . . . 5 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
16 treq 4758 . . . . 5 ((𝑅1𝑥) = (𝑅1‘suc 𝑦) → (Tr (𝑅1𝑥) ↔ Tr (𝑅1‘suc 𝑦)))
1715, 16syl 17 . . . 4 (𝑥 = suc 𝑦 → (Tr (𝑅1𝑥) ↔ Tr (𝑅1‘suc 𝑦)))
18 fveq2 6191 . . . . 5 (𝑥 = 𝐴 → (𝑅1𝑥) = (𝑅1𝐴))
19 treq 4758 . . . . 5 ((𝑅1𝑥) = (𝑅1𝐴) → (Tr (𝑅1𝑥) ↔ Tr (𝑅1𝐴)))
2018, 19syl 17 . . . 4 (𝑥 = 𝐴 → (Tr (𝑅1𝑥) ↔ Tr (𝑅1𝐴)))
21 tr0 4764 . . . 4 Tr ∅
22 limsuc 7049 . . . . . . . 8 (Lim dom 𝑅1 → (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1))
232, 22ax-mp 5 . . . . . . 7 (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1)
24 simpr 477 . . . . . . . . 9 ((𝑦 ∈ On ∧ Tr (𝑅1𝑦)) → Tr (𝑅1𝑦))
25 pwtr 4921 . . . . . . . . 9 (Tr (𝑅1𝑦) ↔ Tr 𝒫 (𝑅1𝑦))
2624, 25sylib 208 . . . . . . . 8 ((𝑦 ∈ On ∧ Tr (𝑅1𝑦)) → Tr 𝒫 (𝑅1𝑦))
27 r1sucg 8632 . . . . . . . . 9 (𝑦 ∈ dom 𝑅1 → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
28 treq 4758 . . . . . . . . 9 ((𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦) → (Tr (𝑅1‘suc 𝑦) ↔ Tr 𝒫 (𝑅1𝑦)))
2927, 28syl 17 . . . . . . . 8 (𝑦 ∈ dom 𝑅1 → (Tr (𝑅1‘suc 𝑦) ↔ Tr 𝒫 (𝑅1𝑦)))
3026, 29syl5ibrcom 237 . . . . . . 7 ((𝑦 ∈ On ∧ Tr (𝑅1𝑦)) → (𝑦 ∈ dom 𝑅1 → Tr (𝑅1‘suc 𝑦)))
3123, 30syl5bir 233 . . . . . 6 ((𝑦 ∈ On ∧ Tr (𝑅1𝑦)) → (suc 𝑦 ∈ dom 𝑅1 → Tr (𝑅1‘suc 𝑦)))
32 ndmfv 6218 . . . . . . . 8 (¬ suc 𝑦 ∈ dom 𝑅1 → (𝑅1‘suc 𝑦) = ∅)
33 treq 4758 . . . . . . . 8 ((𝑅1‘suc 𝑦) = ∅ → (Tr (𝑅1‘suc 𝑦) ↔ Tr ∅))
3432, 33syl 17 . . . . . . 7 (¬ suc 𝑦 ∈ dom 𝑅1 → (Tr (𝑅1‘suc 𝑦) ↔ Tr ∅))
3521, 34mpbiri 248 . . . . . 6 (¬ suc 𝑦 ∈ dom 𝑅1 → Tr (𝑅1‘suc 𝑦))
3631, 35pm2.61d1 171 . . . . 5 ((𝑦 ∈ On ∧ Tr (𝑅1𝑦)) → Tr (𝑅1‘suc 𝑦))
3736ex 450 . . . 4 (𝑦 ∈ On → (Tr (𝑅1𝑦) → Tr (𝑅1‘suc 𝑦)))
38 triun 4766 . . . . . . . 8 (∀𝑦𝑥 Tr (𝑅1𝑦) → Tr 𝑦𝑥 (𝑅1𝑦))
39 r1limg 8634 . . . . . . . . . 10 ((𝑥 ∈ dom 𝑅1 ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
4039ancoms 469 . . . . . . . . 9 ((Lim 𝑥𝑥 ∈ dom 𝑅1) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
41 treq 4758 . . . . . . . . 9 ((𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦) → (Tr (𝑅1𝑥) ↔ Tr 𝑦𝑥 (𝑅1𝑦)))
4240, 41syl 17 . . . . . . . 8 ((Lim 𝑥𝑥 ∈ dom 𝑅1) → (Tr (𝑅1𝑥) ↔ Tr 𝑦𝑥 (𝑅1𝑦)))
4338, 42syl5ibr 236 . . . . . . 7 ((Lim 𝑥𝑥 ∈ dom 𝑅1) → (∀𝑦𝑥 Tr (𝑅1𝑦) → Tr (𝑅1𝑥)))
4443impancom 456 . . . . . 6 ((Lim 𝑥 ∧ ∀𝑦𝑥 Tr (𝑅1𝑦)) → (𝑥 ∈ dom 𝑅1 → Tr (𝑅1𝑥)))
45 ndmfv 6218 . . . . . . . 8 𝑥 ∈ dom 𝑅1 → (𝑅1𝑥) = ∅)
4645, 10syl 17 . . . . . . 7 𝑥 ∈ dom 𝑅1 → (Tr (𝑅1𝑥) ↔ Tr ∅))
4721, 46mpbiri 248 . . . . . 6 𝑥 ∈ dom 𝑅1 → Tr (𝑅1𝑥))
4844, 47pm2.61d1 171 . . . . 5 ((Lim 𝑥 ∧ ∀𝑦𝑥 Tr (𝑅1𝑦)) → Tr (𝑅1𝑥))
4948ex 450 . . . 4 (Lim 𝑥 → (∀𝑦𝑥 Tr (𝑅1𝑦) → Tr (𝑅1𝑥)))
5011, 14, 17, 20, 21, 37, 49tfinds 7059 . . 3 (𝐴 ∈ On → Tr (𝑅1𝐴))
516, 50syl 17 . 2 (𝐴 ∈ dom 𝑅1 → Tr (𝑅1𝐴))
52 ndmfv 6218 . . . 4 𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) = ∅)
53 treq 4758 . . . 4 ((𝑅1𝐴) = ∅ → (Tr (𝑅1𝐴) ↔ Tr ∅))
5452, 53syl 17 . . 3 𝐴 ∈ dom 𝑅1 → (Tr (𝑅1𝐴) ↔ Tr ∅))
5521, 54mpbiri 248 . 2 𝐴 ∈ dom 𝑅1 → Tr (𝑅1𝐴))
5651, 55pm2.61i 176 1 Tr (𝑅1𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wss 3574  c0 3915  𝒫 cpw 4158   ciun 4520  Tr wtr 4752  dom cdm 5114  Ord word 5722  Oncon0 5723  Lim wlim 5724  suc csuc 5725  Fun wfun 5882  cfv 5888  𝑅1cr1 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627
This theorem is referenced by:  r1tr2  8640  r1ordg  8641  r1ord3g  8642  r1ord2  8644  r1sssuc  8646  r1pwss  8647  r1val1  8649  rankwflemb  8656  r1elwf  8659  r1elssi  8668  uniwf  8682  tcrank  8747  ackbij2lem3  9063  r1limwun  9558  tskr1om2  9590
  Copyright terms: Public domain W3C validator