MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunitc1 Structured version   Visualization version   GIF version

Theorem itunitc1 9242
Description: Each union iterate is a member of the transitive closure. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
Assertion
Ref Expression
itunitc1 ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)

Proof of Theorem itunitc1
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . 5 (𝑎 = 𝐴 → (𝑈𝑎) = (𝑈𝐴))
21fveq1d 6193 . . . 4 (𝑎 = 𝐴 → ((𝑈𝑎)‘𝐵) = ((𝑈𝐴)‘𝐵))
3 fveq2 6191 . . . 4 (𝑎 = 𝐴 → (TC‘𝑎) = (TC‘𝐴))
42, 3sseq12d 3634 . . 3 (𝑎 = 𝐴 → (((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎) ↔ ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴)))
5 fveq2 6191 . . . . . 6 (𝑏 = ∅ → ((𝑈𝑎)‘𝑏) = ((𝑈𝑎)‘∅))
65sseq1d 3632 . . . . 5 (𝑏 = ∅ → (((𝑈𝑎)‘𝑏) ⊆ (TC‘𝑎) ↔ ((𝑈𝑎)‘∅) ⊆ (TC‘𝑎)))
7 fveq2 6191 . . . . . 6 (𝑏 = 𝑐 → ((𝑈𝑎)‘𝑏) = ((𝑈𝑎)‘𝑐))
87sseq1d 3632 . . . . 5 (𝑏 = 𝑐 → (((𝑈𝑎)‘𝑏) ⊆ (TC‘𝑎) ↔ ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎)))
9 fveq2 6191 . . . . . 6 (𝑏 = suc 𝑐 → ((𝑈𝑎)‘𝑏) = ((𝑈𝑎)‘suc 𝑐))
109sseq1d 3632 . . . . 5 (𝑏 = suc 𝑐 → (((𝑈𝑎)‘𝑏) ⊆ (TC‘𝑎) ↔ ((𝑈𝑎)‘suc 𝑐) ⊆ (TC‘𝑎)))
11 fveq2 6191 . . . . . 6 (𝑏 = 𝐵 → ((𝑈𝑎)‘𝑏) = ((𝑈𝑎)‘𝐵))
1211sseq1d 3632 . . . . 5 (𝑏 = 𝐵 → (((𝑈𝑎)‘𝑏) ⊆ (TC‘𝑎) ↔ ((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎)))
13 vex 3203 . . . . . 6 𝑎 ∈ V
14 ituni.u . . . . . . . 8 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
1514ituni0 9240 . . . . . . 7 (𝑎 ∈ V → ((𝑈𝑎)‘∅) = 𝑎)
16 tcid 8615 . . . . . . 7 (𝑎 ∈ V → 𝑎 ⊆ (TC‘𝑎))
1715, 16eqsstrd 3639 . . . . . 6 (𝑎 ∈ V → ((𝑈𝑎)‘∅) ⊆ (TC‘𝑎))
1813, 17ax-mp 5 . . . . 5 ((𝑈𝑎)‘∅) ⊆ (TC‘𝑎)
1914itunisuc 9241 . . . . . . 7 ((𝑈𝑎)‘suc 𝑐) = ((𝑈𝑎)‘𝑐)
20 tctr 8616 . . . . . . . . . 10 Tr (TC‘𝑎)
21 pwtr 4921 . . . . . . . . . 10 (Tr (TC‘𝑎) ↔ Tr 𝒫 (TC‘𝑎))
2220, 21mpbi 220 . . . . . . . . 9 Tr 𝒫 (TC‘𝑎)
23 trss 4761 . . . . . . . . 9 (Tr 𝒫 (TC‘𝑎) → (((𝑈𝑎)‘𝑐) ∈ 𝒫 (TC‘𝑎) → ((𝑈𝑎)‘𝑐) ⊆ 𝒫 (TC‘𝑎)))
2422, 23ax-mp 5 . . . . . . . 8 (((𝑈𝑎)‘𝑐) ∈ 𝒫 (TC‘𝑎) → ((𝑈𝑎)‘𝑐) ⊆ 𝒫 (TC‘𝑎))
25 fvex 6201 . . . . . . . . 9 ((𝑈𝑎)‘𝑐) ∈ V
2625elpw 4164 . . . . . . . 8 (((𝑈𝑎)‘𝑐) ∈ 𝒫 (TC‘𝑎) ↔ ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎))
27 sspwuni 4611 . . . . . . . 8 (((𝑈𝑎)‘𝑐) ⊆ 𝒫 (TC‘𝑎) ↔ ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎))
2824, 26, 273imtr3i 280 . . . . . . 7 (((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎) → ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎))
2919, 28syl5eqss 3649 . . . . . 6 (((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎) → ((𝑈𝑎)‘suc 𝑐) ⊆ (TC‘𝑎))
3029a1i 11 . . . . 5 (𝑐 ∈ ω → (((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎) → ((𝑈𝑎)‘suc 𝑐) ⊆ (TC‘𝑎)))
316, 8, 10, 12, 18, 30finds 7092 . . . 4 (𝐵 ∈ ω → ((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎))
3214itunifn 9239 . . . . . . . 8 (𝑎 ∈ V → (𝑈𝑎) Fn ω)
33 fndm 5990 . . . . . . . 8 ((𝑈𝑎) Fn ω → dom (𝑈𝑎) = ω)
3413, 32, 33mp2b 10 . . . . . . 7 dom (𝑈𝑎) = ω
3534eleq2i 2693 . . . . . 6 (𝐵 ∈ dom (𝑈𝑎) ↔ 𝐵 ∈ ω)
36 ndmfv 6218 . . . . . 6 𝐵 ∈ dom (𝑈𝑎) → ((𝑈𝑎)‘𝐵) = ∅)
3735, 36sylnbir 321 . . . . 5 𝐵 ∈ ω → ((𝑈𝑎)‘𝐵) = ∅)
38 0ss 3972 . . . . 5 ∅ ⊆ (TC‘𝑎)
3937, 38syl6eqss 3655 . . . 4 𝐵 ∈ ω → ((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎))
4031, 39pm2.61i 176 . . 3 ((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎)
414, 40vtoclg 3266 . 2 (𝐴 ∈ V → ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴))
42 fvprc 6185 . . . . 5 𝐴 ∈ V → (𝑈𝐴) = ∅)
4342fveq1d 6193 . . . 4 𝐴 ∈ V → ((𝑈𝐴)‘𝐵) = (∅‘𝐵))
44 0fv 6227 . . . 4 (∅‘𝐵) = ∅
4543, 44syl6eq 2672 . . 3 𝐴 ∈ V → ((𝑈𝐴)‘𝐵) = ∅)
46 0ss 3972 . . 3 ∅ ⊆ (TC‘𝐴)
4745, 46syl6eqss 3655 . 2 𝐴 ∈ V → ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴))
4841, 47pm2.61i 176 1 ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  c0 3915  𝒫 cpw 4158   cuni 4436  cmpt 4729  Tr wtr 4752  dom cdm 5114  cres 5116  suc csuc 5725   Fn wfn 5883  cfv 5888  ωcom 7065  reccrdg 7505  TCctc 8612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-tc 8613
This theorem is referenced by:  itunitc  9243
  Copyright terms: Public domain W3C validator