![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > quslem | Structured version Visualization version GIF version |
Description: The function in qusval 16202 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
qusval.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
qusval.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
qusval.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
qusval.e | ⊢ (𝜑 → ∼ ∈ 𝑊) |
qusval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
Ref | Expression |
---|---|
quslem | ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusval.e | . . . . . 6 ⊢ (𝜑 → ∼ ∈ 𝑊) | |
2 | ecexg 7746 | . . . . . 6 ⊢ ( ∼ ∈ 𝑊 → [𝑥] ∼ ∈ V) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → [𝑥] ∼ ∈ V) |
4 | 3 | ralrimivw 2967 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 [𝑥] ∼ ∈ V) |
5 | qusval.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
6 | 5 | fnmpt 6020 | . . . 4 ⊢ (∀𝑥 ∈ 𝑉 [𝑥] ∼ ∈ V → 𝐹 Fn 𝑉) |
7 | 4, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝑉) |
8 | dffn4 6121 | . . 3 ⊢ (𝐹 Fn 𝑉 ↔ 𝐹:𝑉–onto→ran 𝐹) | |
9 | 7, 8 | sylib 208 | . 2 ⊢ (𝜑 → 𝐹:𝑉–onto→ran 𝐹) |
10 | 5 | rnmpt 5371 | . . . 4 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝑉 𝑦 = [𝑥] ∼ } |
11 | df-qs 7748 | . . . 4 ⊢ (𝑉 / ∼ ) = {𝑦 ∣ ∃𝑥 ∈ 𝑉 𝑦 = [𝑥] ∼ } | |
12 | 10, 11 | eqtr4i 2647 | . . 3 ⊢ ran 𝐹 = (𝑉 / ∼ ) |
13 | foeq3 6113 | . . 3 ⊢ (ran 𝐹 = (𝑉 / ∼ ) → (𝐹:𝑉–onto→ran 𝐹 ↔ 𝐹:𝑉–onto→(𝑉 / ∼ ))) | |
14 | 12, 13 | ax-mp 5 | . 2 ⊢ (𝐹:𝑉–onto→ran 𝐹 ↔ 𝐹:𝑉–onto→(𝑉 / ∼ )) |
15 | 9, 14 | sylib 208 | 1 ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 {cab 2608 ∀wral 2912 ∃wrex 2913 Vcvv 3200 ↦ cmpt 4729 ran crn 5115 Fn wfn 5883 –onto→wfo 5886 ‘cfv 5888 (class class class)co 6650 [cec 7740 / cqs 7741 Basecbs 15857 /s cqus 16165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-fun 5890 df-fn 5891 df-fo 5894 df-ec 7744 df-qs 7748 |
This theorem is referenced by: qusbas 16205 quss 16206 qusaddvallem 16211 qusaddflem 16212 qusaddval 16213 qusaddf 16214 qusmulval 16215 qusmulf 16216 qusgrp2 17533 qusring2 18620 znzrhfo 19896 qustps 21525 qustgpopn 21923 qustgplem 21924 qustgphaus 21926 |
Copyright terms: Public domain | W3C validator |