| Step | Hyp | Ref
| Expression |
| 1 | | qustgp.h |
. . . . . . . 8
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) |
| 2 | | eqid 2622 |
. . . . . . . 8
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 3 | 1, 2 | qus0 17652 |
. . . . . . 7
⊢ (𝑌 ∈ (NrmSGrp‘𝐺) →
[(0g‘𝐺)](𝐺 ~QG 𝑌) = (0g‘𝐻)) |
| 4 | 3 | 3ad2ant2 1083 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g‘𝐺)](𝐺 ~QG 𝑌) = (0g‘𝐻)) |
| 5 | | tgpgrp 21882 |
. . . . . . . . 9
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
| 6 | 5 | 3ad2ant1 1082 |
. . . . . . . 8
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐺 ∈ Grp) |
| 7 | | eqid 2622 |
. . . . . . . . 9
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 8 | 7, 2 | grpidcl 17450 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ (Base‘𝐺)) |
| 9 | 6, 8 | syl 17 |
. . . . . . 7
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (0g‘𝐺) ∈ (Base‘𝐺)) |
| 10 | | ovex 6678 |
. . . . . . . 8
⊢ (𝐺 ~QG 𝑌) ∈ V |
| 11 | 10 | ecelqsi 7803 |
. . . . . . 7
⊢
((0g‘𝐺) ∈ (Base‘𝐺) → [(0g‘𝐺)](𝐺 ~QG 𝑌) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑌))) |
| 12 | 9, 11 | syl 17 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g‘𝐺)](𝐺 ~QG 𝑌) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑌))) |
| 13 | 4, 12 | eqeltrrd 2702 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (0g‘𝐻) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑌))) |
| 14 | 13 | snssd 4340 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {(0g‘𝐻)} ⊆ ((Base‘𝐺) / (𝐺 ~QG 𝑌))) |
| 15 | | eqid 2622 |
. . . . . . 7
⊢ (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) = (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) |
| 16 | 15 | mptpreima 5628 |
. . . . . 6
⊢ (◡(𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g‘𝐻)}) = {𝑥 ∈ (Base‘𝐺) ∣ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)}} |
| 17 | | nsgsubg 17626 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺)) |
| 18 | 17 | 3ad2ant2 1083 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ∈ (SubGrp‘𝐺)) |
| 19 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝐺 ~QG 𝑌) = (𝐺 ~QG 𝑌) |
| 20 | 7, 19, 2 | eqgid 17646 |
. . . . . . . . . 10
⊢ (𝑌 ∈ (SubGrp‘𝐺) →
[(0g‘𝐺)](𝐺 ~QG 𝑌) = 𝑌) |
| 21 | 18, 20 | syl 17 |
. . . . . . . . 9
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g‘𝐺)](𝐺 ~QG 𝑌) = 𝑌) |
| 22 | 7 | subgss 17595 |
. . . . . . . . . 10
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 ⊆ (Base‘𝐺)) |
| 23 | 18, 22 | syl 17 |
. . . . . . . . 9
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ⊆ (Base‘𝐺)) |
| 24 | 21, 23 | eqsstrd 3639 |
. . . . . . . 8
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g‘𝐺)](𝐺 ~QG 𝑌) ⊆ (Base‘𝐺)) |
| 25 | | sseqin2 3817 |
. . . . . . . 8
⊢
([(0g‘𝐺)](𝐺 ~QG 𝑌) ⊆ (Base‘𝐺) ↔ ((Base‘𝐺) ∩ [(0g‘𝐺)](𝐺 ~QG 𝑌)) = [(0g‘𝐺)](𝐺 ~QG 𝑌)) |
| 26 | 24, 25 | sylib 208 |
. . . . . . 7
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((Base‘𝐺) ∩ [(0g‘𝐺)](𝐺 ~QG 𝑌)) = [(0g‘𝐺)](𝐺 ~QG 𝑌)) |
| 27 | 7, 19 | eqger 17644 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑌) Er (Base‘𝐺)) |
| 28 | 18, 27 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐺 ~QG 𝑌) Er (Base‘𝐺)) |
| 29 | 28, 9 | erth 7791 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((0g‘𝐺)(𝐺 ~QG 𝑌)𝑥 ↔ [(0g‘𝐺)](𝐺 ~QG 𝑌) = [𝑥](𝐺 ~QG 𝑌))) |
| 30 | 29 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((0g‘𝐺)(𝐺 ~QG 𝑌)𝑥 ↔ [(0g‘𝐺)](𝐺 ~QG 𝑌) = [𝑥](𝐺 ~QG 𝑌))) |
| 31 | 4 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → [(0g‘𝐺)](𝐺 ~QG 𝑌) = (0g‘𝐻)) |
| 32 | 31 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ([(0g‘𝐺)](𝐺 ~QG 𝑌) = [𝑥](𝐺 ~QG 𝑌) ↔ (0g‘𝐻) = [𝑥](𝐺 ~QG 𝑌))) |
| 33 | 30, 32 | bitrd 268 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((0g‘𝐺)(𝐺 ~QG 𝑌)𝑥 ↔ (0g‘𝐻) = [𝑥](𝐺 ~QG 𝑌))) |
| 34 | | vex 3203 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 35 | | fvex 6201 |
. . . . . . . . . 10
⊢
(0g‘𝐺) ∈ V |
| 36 | 34, 35 | elec 7786 |
. . . . . . . . 9
⊢ (𝑥 ∈
[(0g‘𝐺)](𝐺 ~QG 𝑌) ↔ (0g‘𝐺)(𝐺 ~QG 𝑌)𝑥) |
| 37 | | fvex 6201 |
. . . . . . . . . . 11
⊢
(0g‘𝐻) ∈ V |
| 38 | 37 | elsn2 4211 |
. . . . . . . . . 10
⊢ ([𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)} ↔ [𝑥](𝐺 ~QG 𝑌) = (0g‘𝐻)) |
| 39 | | eqcom 2629 |
. . . . . . . . . 10
⊢ ([𝑥](𝐺 ~QG 𝑌) = (0g‘𝐻) ↔ (0g‘𝐻) = [𝑥](𝐺 ~QG 𝑌)) |
| 40 | 38, 39 | bitri 264 |
. . . . . . . . 9
⊢ ([𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)} ↔
(0g‘𝐻) =
[𝑥](𝐺 ~QG 𝑌)) |
| 41 | 33, 36, 40 | 3bitr4g 303 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥 ∈ [(0g‘𝐺)](𝐺 ~QG 𝑌) ↔ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)})) |
| 42 | 41 | rabbi2dva 3821 |
. . . . . . 7
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((Base‘𝐺) ∩ [(0g‘𝐺)](𝐺 ~QG 𝑌)) = {𝑥 ∈ (Base‘𝐺) ∣ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)}}) |
| 43 | 26, 42, 21 | 3eqtr3d 2664 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {𝑥 ∈ (Base‘𝐺) ∣ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)}} = 𝑌) |
| 44 | 16, 43 | syl5eq 2668 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (◡(𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g‘𝐻)}) = 𝑌) |
| 45 | | simp3 1063 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ∈ (Clsd‘𝐽)) |
| 46 | 44, 45 | eqeltrd 2701 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (◡(𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g‘𝐻)}) ∈ (Clsd‘𝐽)) |
| 47 | | qustgphaus.j |
. . . . . . 7
⊢ 𝐽 = (TopOpen‘𝐺) |
| 48 | 47, 7 | tgptopon 21886 |
. . . . . 6
⊢ (𝐺 ∈ TopGrp → 𝐽 ∈
(TopOn‘(Base‘𝐺))) |
| 49 | 48 | 3ad2ant1 1082 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
| 50 | 1 | a1i 11 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))) |
| 51 | | eqidd 2623 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (Base‘𝐺) = (Base‘𝐺)) |
| 52 | 10 | a1i 11 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐺 ~QG 𝑌) ∈ V) |
| 53 | | simp1 1061 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐺 ∈ TopGrp) |
| 54 | 50, 51, 15, 52, 53 | quslem 16203 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)):(Base‘𝐺)–onto→((Base‘𝐺) / (𝐺 ~QG 𝑌))) |
| 55 | | qtopcld 21516 |
. . . . 5
⊢ ((𝐽 ∈
(TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)):(Base‘𝐺)–onto→((Base‘𝐺) / (𝐺 ~QG 𝑌))) → ({(0g‘𝐻)} ∈ (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))) ↔ ({(0g‘𝐻)} ⊆ ((Base‘𝐺) / (𝐺 ~QG 𝑌)) ∧ (◡(𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g‘𝐻)}) ∈ (Clsd‘𝐽)))) |
| 56 | 49, 54, 55 | syl2anc 693 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ({(0g‘𝐻)} ∈ (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))) ↔ ({(0g‘𝐻)} ⊆ ((Base‘𝐺) / (𝐺 ~QG 𝑌)) ∧ (◡(𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g‘𝐻)}) ∈ (Clsd‘𝐽)))) |
| 57 | 14, 46, 56 | mpbir2and 957 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {(0g‘𝐻)} ∈ (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌))))) |
| 58 | 50, 51, 15, 52, 53 | qusval 16202 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐻 = ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “s 𝐺)) |
| 59 | | qustgphaus.k |
. . . . 5
⊢ 𝐾 = (TopOpen‘𝐻) |
| 60 | 58, 51, 54, 53, 47, 59 | imastopn 21523 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 = (𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))) |
| 61 | 60 | fveq2d 6195 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (Clsd‘𝐾) = (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌))))) |
| 62 | 57, 61 | eleqtrrd 2704 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {(0g‘𝐻)} ∈ (Clsd‘𝐾)) |
| 63 | 1 | qustgp 21925 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺)) → 𝐻 ∈ TopGrp) |
| 64 | 63 | 3adant3 1081 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐻 ∈ TopGrp) |
| 65 | | eqid 2622 |
. . . 4
⊢
(0g‘𝐻) = (0g‘𝐻) |
| 66 | 65, 59 | tgphaus 21920 |
. . 3
⊢ (𝐻 ∈ TopGrp → (𝐾 ∈ Haus ↔
{(0g‘𝐻)}
∈ (Clsd‘𝐾))) |
| 67 | 64, 66 | syl 17 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐾 ∈ Haus ↔
{(0g‘𝐻)}
∈ (Clsd‘𝐾))) |
| 68 | 62, 67 | mpbird 247 |
1
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 ∈ Haus) |