![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.12 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.12 2164. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.12 | ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2764 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
2 | nfra1 2941 | . . . 4 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐵 𝜑 | |
3 | 1, 2 | nfrex 3007 | . . 3 ⊢ Ⅎ𝑦∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
4 | ax-1 6 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑)) | |
5 | 3, 4 | ralrimi 2957 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) |
6 | rsp 2929 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 𝜑 → (𝑦 ∈ 𝐵 → 𝜑)) | |
7 | 6 | com12 32 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 𝜑 → 𝜑)) |
8 | 7 | reximdv 3016 | . . 3 ⊢ (𝑦 ∈ 𝐵 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∃𝑥 ∈ 𝐴 𝜑)) |
9 | 8 | ralimia 2950 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
10 | 5, 9 | syl 17 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 |
This theorem is referenced by: iuniin 4531 ucncn 22089 ftc1a 23800 heicant 33444 rngoid 33701 rngmgmbs4 33730 intimass 37946 intimag 37948 |
Copyright terms: Public domain | W3C validator |