MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1a Structured version   Visualization version   GIF version

Theorem ftc1a 23800
Description: The Fundamental Theorem of Calculus, part one. The function 𝐺 formed by varying the right endpoint of an integral of 𝐹 is continuous if 𝐹 is integrable. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1a.f (𝜑𝐹:𝐷⟶ℂ)
Assertion
Ref Expression
ftc1a (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Distinct variable groups:   𝑥,𝑡,𝐷   𝑡,𝐴,𝑥   𝑡,𝐵,𝑥   𝜑,𝑡,𝑥   𝑡,𝐹,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1a
Dummy variables 𝑠 𝑢 𝑤 𝑦 𝑧 𝑟 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc1.g . . 3 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
2 ftc1.a . . 3 (𝜑𝐴 ∈ ℝ)
3 ftc1.b . . 3 (𝜑𝐵 ∈ ℝ)
4 ftc1.le . . 3 (𝜑𝐴𝐵)
5 ftc1.s . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
6 ftc1.d . . 3 (𝜑𝐷 ⊆ ℝ)
7 ftc1.i . . 3 (𝜑𝐹 ∈ 𝐿1)
8 ftc1a.f . . 3 (𝜑𝐹:𝐷⟶ℂ)
91, 2, 3, 4, 5, 6, 7, 8ftc1lem2 23799 . 2 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
10 fvexd 6203 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑤𝐷) → (𝐹𝑤) ∈ V)
118feqmptd 6249 . . . . . . . . 9 (𝜑𝐹 = (𝑤𝐷 ↦ (𝐹𝑤)))
1211, 7eqeltrrd 2702 . . . . . . . 8 (𝜑 → (𝑤𝐷 ↦ (𝐹𝑤)) ∈ 𝐿1)
1312adantr 481 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → (𝑤𝐷 ↦ (𝐹𝑤)) ∈ 𝐿1)
14 simpr 477 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
1510, 13, 14itgcn 23609 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒))
16 oveq12 6659 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑧𝑟 = 𝑦) → (𝑠𝑟) = (𝑧𝑦))
1716fveq2d 6195 . . . . . . . . . . . . . 14 ((𝑠 = 𝑧𝑟 = 𝑦) → (abs‘(𝑠𝑟)) = (abs‘(𝑧𝑦)))
1817breq1d 4663 . . . . . . . . . . . . 13 ((𝑠 = 𝑧𝑟 = 𝑦) → ((abs‘(𝑠𝑟)) < 𝑑 ↔ (abs‘(𝑧𝑦)) < 𝑑))
19 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑧 → (𝐺𝑠) = (𝐺𝑧))
20 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑦 → (𝐺𝑟) = (𝐺𝑦))
2119, 20oveqan12d 6669 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑧𝑟 = 𝑦) → ((𝐺𝑠) − (𝐺𝑟)) = ((𝐺𝑧) − (𝐺𝑦)))
2221fveq2d 6195 . . . . . . . . . . . . . 14 ((𝑠 = 𝑧𝑟 = 𝑦) → (abs‘((𝐺𝑠) − (𝐺𝑟))) = (abs‘((𝐺𝑧) − (𝐺𝑦))))
2322breq1d 4663 . . . . . . . . . . . . 13 ((𝑠 = 𝑧𝑟 = 𝑦) → ((abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒 ↔ (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
2418, 23imbi12d 334 . . . . . . . . . . . 12 ((𝑠 = 𝑧𝑟 = 𝑦) → (((abs‘(𝑠𝑟)) < 𝑑 → (abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒) ↔ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
2524ancoms 469 . . . . . . . . . . 11 ((𝑟 = 𝑦𝑠 = 𝑧) → (((abs‘(𝑠𝑟)) < 𝑑 → (abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒) ↔ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
26 oveq12 6659 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑦𝑟 = 𝑧) → (𝑠𝑟) = (𝑦𝑧))
2726fveq2d 6195 . . . . . . . . . . . . . 14 ((𝑠 = 𝑦𝑟 = 𝑧) → (abs‘(𝑠𝑟)) = (abs‘(𝑦𝑧)))
2827breq1d 4663 . . . . . . . . . . . . 13 ((𝑠 = 𝑦𝑟 = 𝑧) → ((abs‘(𝑠𝑟)) < 𝑑 ↔ (abs‘(𝑦𝑧)) < 𝑑))
29 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑦 → (𝐺𝑠) = (𝐺𝑦))
30 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑧 → (𝐺𝑟) = (𝐺𝑧))
3129, 30oveqan12d 6669 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑦𝑟 = 𝑧) → ((𝐺𝑠) − (𝐺𝑟)) = ((𝐺𝑦) − (𝐺𝑧)))
3231fveq2d 6195 . . . . . . . . . . . . . 14 ((𝑠 = 𝑦𝑟 = 𝑧) → (abs‘((𝐺𝑠) − (𝐺𝑟))) = (abs‘((𝐺𝑦) − (𝐺𝑧))))
3332breq1d 4663 . . . . . . . . . . . . 13 ((𝑠 = 𝑦𝑟 = 𝑧) → ((abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒 ↔ (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒))
3428, 33imbi12d 334 . . . . . . . . . . . 12 ((𝑠 = 𝑦𝑟 = 𝑧) → (((abs‘(𝑠𝑟)) < 𝑑 → (abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑑 → (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒)))
3534ancoms 469 . . . . . . . . . . 11 ((𝑟 = 𝑧𝑠 = 𝑦) → (((abs‘(𝑠𝑟)) < 𝑑 → (abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑑 → (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒)))
36 iccssre 12255 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
372, 3, 36syl2anc 693 . . . . . . . . . . . 12 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
3837ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) → (𝐴[,]𝐵) ⊆ ℝ)
3937ad3antrrr 766 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (𝐴[,]𝐵) ⊆ ℝ)
40 simprr 796 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑧 ∈ (𝐴[,]𝐵))
4139, 40sseldd 3604 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑧 ∈ ℝ)
4241recnd 10068 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑧 ∈ ℂ)
43 simprl 794 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ (𝐴[,]𝐵))
4439, 43sseldd 3604 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ ℝ)
4544recnd 10068 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ ℂ)
4642, 45abssubd 14192 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
4746breq1d 4663 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → ((abs‘(𝑧𝑦)) < 𝑑 ↔ (abs‘(𝑦𝑧)) < 𝑑))
489ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝐺:(𝐴[,]𝐵)⟶ℂ)
4948, 40ffvelrnd 6360 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (𝐺𝑧) ∈ ℂ)
5048, 43ffvelrnd 6360 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (𝐺𝑦) ∈ ℂ)
5149, 50abssubd 14192 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (abs‘((𝐺𝑧) − (𝐺𝑦))) = (abs‘((𝐺𝑦) − (𝐺𝑧))))
5251breq1d 4663 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → ((abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒 ↔ (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒))
5347, 52imbi12d 334 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑑 → (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒)))
54 simpr3 1069 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝑦𝑧)
552adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐴 ∈ ℝ)
563adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐵 ∈ ℝ)
574adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐴𝐵)
585adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → (𝐴(,)𝐵) ⊆ 𝐷)
596adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐷 ⊆ ℝ)
607adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐹 ∈ 𝐿1)
618adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐹:𝐷⟶ℂ)
62 simpr1 1067 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝑦 ∈ (𝐴[,]𝐵))
63 simpr2 1068 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝑧 ∈ (𝐴[,]𝐵))
641, 55, 56, 57, 58, 59, 60, 61, 62, 63ftc1lem1 23798 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) ∧ 𝑦𝑧) → ((𝐺𝑧) − (𝐺𝑦)) = ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡)
6554, 64mpdan 702 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → ((𝐺𝑧) − (𝐺𝑦)) = ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡)
6665adantlr 751 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → ((𝐺𝑧) − (𝐺𝑦)) = ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡)
6766ad2ant2r 783 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ((𝐺𝑧) − (𝐺𝑦)) = ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡)
6867fveq2d 6195 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘((𝐺𝑧) − (𝐺𝑦))) = (abs‘∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡))
69 fvexd 6203 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) ∧ 𝑡 ∈ (𝑦(,)𝑧)) → (𝐹𝑡) ∈ V)
702ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐴 ∈ ℝ)
7170rexrd 10089 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐴 ∈ ℝ*)
72 simprl1 1106 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑦 ∈ (𝐴[,]𝐵))
733ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐵 ∈ ℝ)
74 elicc2 12238 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
7570, 73, 74syl2anc 693 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
7672, 75mpbid 222 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
7776simp2d 1074 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐴𝑦)
78 iooss1 12210 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ*𝐴𝑦) → (𝑦(,)𝑧) ⊆ (𝐴(,)𝑧))
7971, 77, 78syl2anc 693 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦(,)𝑧) ⊆ (𝐴(,)𝑧))
8073rexrd 10089 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐵 ∈ ℝ*)
81 simprl2 1107 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑧 ∈ (𝐴[,]𝐵))
82 elicc2 12238 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
8370, 73, 82syl2anc 693 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
8481, 83mpbid 222 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵))
8584simp3d 1075 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑧𝐵)
86 iooss2 12211 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ*𝑧𝐵) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
8780, 85, 86syl2anc 693 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
8879, 87sstrd 3613 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦(,)𝑧) ⊆ (𝐴(,)𝐵))
895ad3antrrr 766 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝐴(,)𝐵) ⊆ 𝐷)
9088, 89sstrd 3613 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦(,)𝑧) ⊆ 𝐷)
91 ioombl 23333 . . . . . . . . . . . . . . . . . 18 (𝑦(,)𝑧) ∈ dom vol
9291a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦(,)𝑧) ∈ dom vol)
93 fvexd 6203 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) ∧ 𝑡𝐷) → (𝐹𝑡) ∈ V)
948feqmptd 6249 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
9594, 7eqeltrrd 2702 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
9695ad3antrrr 766 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
9790, 92, 93, 96iblss 23571 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑡 ∈ (𝑦(,)𝑧) ↦ (𝐹𝑡)) ∈ 𝐿1)
9869, 97itgcl 23550 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡 ∈ ℂ)
9998abscld 14175 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡) ∈ ℝ)
100 iblmbf 23534 . . . . . . . . . . . . . . . . . 18 ((𝑡 ∈ (𝑦(,)𝑧) ↦ (𝐹𝑡)) ∈ 𝐿1 → (𝑡 ∈ (𝑦(,)𝑧) ↦ (𝐹𝑡)) ∈ MblFn)
10197, 100syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑡 ∈ (𝑦(,)𝑧) ↦ (𝐹𝑡)) ∈ MblFn)
102101, 69mbfmptcl 23404 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) ∧ 𝑡 ∈ (𝑦(,)𝑧)) → (𝐹𝑡) ∈ ℂ)
103102abscld 14175 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) ∧ 𝑡 ∈ (𝑦(,)𝑧)) → (abs‘(𝐹𝑡)) ∈ ℝ)
10469, 97iblabs 23595 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑡 ∈ (𝑦(,)𝑧) ↦ (abs‘(𝐹𝑡))) ∈ 𝐿1)
105103, 104itgrecl 23564 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 ∈ ℝ)
106 simprl 794 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑒 ∈ ℝ+)
107106ad2antrr 762 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑒 ∈ ℝ+)
108107rpred 11872 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑒 ∈ ℝ)
10969, 97itgabs 23601 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡) ≤ ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡)
110 simplr 792 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒))
111 mblvol 23298 . . . . . . . . . . . . . . . . . 18 ((𝑦(,)𝑧) ∈ dom vol → (vol‘(𝑦(,)𝑧)) = (vol*‘(𝑦(,)𝑧)))
11291, 111ax-mp 5 . . . . . . . . . . . . . . . . 17 (vol‘(𝑦(,)𝑧)) = (vol*‘(𝑦(,)𝑧))
113 ioossre 12235 . . . . . . . . . . . . . . . . . . 19 (𝑦(,)𝑧) ⊆ ℝ
114 ovolcl 23246 . . . . . . . . . . . . . . . . . . 19 ((𝑦(,)𝑧) ⊆ ℝ → (vol*‘(𝑦(,)𝑧)) ∈ ℝ*)
115113, 114mp1i 13 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦(,)𝑧)) ∈ ℝ*)
11684simp1d 1073 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑧 ∈ ℝ)
11776simp1d 1073 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑦 ∈ ℝ)
118116, 117resubcld 10458 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧𝑦) ∈ ℝ)
119118rexrd 10089 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧𝑦) ∈ ℝ*)
120 simprr 796 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑑 ∈ ℝ+)
121120ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑑 ∈ ℝ+)
122121rpxrd 11873 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑑 ∈ ℝ*)
123 ioossicc 12259 . . . . . . . . . . . . . . . . . . . 20 (𝑦(,)𝑧) ⊆ (𝑦[,]𝑧)
124 iccssre 12255 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦[,]𝑧) ⊆ ℝ)
125117, 116, 124syl2anc 693 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦[,]𝑧) ⊆ ℝ)
126 ovolss 23253 . . . . . . . . . . . . . . . . . . . 20 (((𝑦(,)𝑧) ⊆ (𝑦[,]𝑧) ∧ (𝑦[,]𝑧) ⊆ ℝ) → (vol*‘(𝑦(,)𝑧)) ≤ (vol*‘(𝑦[,]𝑧)))
127123, 125, 126sylancr 695 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦(,)𝑧)) ≤ (vol*‘(𝑦[,]𝑧)))
128 simprl3 1108 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑦𝑧)
129 ovolicc 23291 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) → (vol*‘(𝑦[,]𝑧)) = (𝑧𝑦))
130117, 116, 128, 129syl3anc 1326 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦[,]𝑧)) = (𝑧𝑦))
131127, 130breqtrd 4679 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦(,)𝑧)) ≤ (𝑧𝑦))
132117, 116, 128abssubge0d 14170 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘(𝑧𝑦)) = (𝑧𝑦))
133 simprr 796 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘(𝑧𝑦)) < 𝑑)
134132, 133eqbrtrrd 4677 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧𝑦) < 𝑑)
135115, 119, 122, 131, 134xrlelttrd 11991 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦(,)𝑧)) < 𝑑)
136112, 135syl5eqbr 4688 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol‘(𝑦(,)𝑧)) < 𝑑)
13790, 136jca 554 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ((𝑦(,)𝑧) ⊆ 𝐷 ∧ (vol‘(𝑦(,)𝑧)) < 𝑑))
138 sseq1 3626 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑦(,)𝑧) → (𝑢𝐷 ↔ (𝑦(,)𝑧) ⊆ 𝐷))
139 fveq2 6191 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝑦(,)𝑧) → (vol‘𝑢) = (vol‘(𝑦(,)𝑧)))
140139breq1d 4663 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑦(,)𝑧) → ((vol‘𝑢) < 𝑑 ↔ (vol‘(𝑦(,)𝑧)) < 𝑑))
141138, 140anbi12d 747 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑦(,)𝑧) → ((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) ↔ ((𝑦(,)𝑧) ⊆ 𝐷 ∧ (vol‘(𝑦(,)𝑧)) < 𝑑)))
142 fveq2 6191 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑡 → (𝐹𝑤) = (𝐹𝑡))
143142fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑡 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑡)))
144143cbvitgv 23543 . . . . . . . . . . . . . . . . . . 19 𝑢(abs‘(𝐹𝑤)) d𝑤 = ∫𝑢(abs‘(𝐹𝑡)) d𝑡
145 itgeq1 23539 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝑦(,)𝑧) → ∫𝑢(abs‘(𝐹𝑡)) d𝑡 = ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡)
146144, 145syl5eq 2668 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑦(,)𝑧) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 = ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡)
147146breq1d 4663 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑦(,)𝑧) → (∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒 ↔ ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 < 𝑒))
148141, 147imbi12d 334 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑦(,)𝑧) → (((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒) ↔ (((𝑦(,)𝑧) ⊆ 𝐷 ∧ (vol‘(𝑦(,)𝑧)) < 𝑑) → ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 < 𝑒)))
149148rspcv 3305 . . . . . . . . . . . . . . 15 ((𝑦(,)𝑧) ∈ dom vol → (∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒) → (((𝑦(,)𝑧) ⊆ 𝐷 ∧ (vol‘(𝑦(,)𝑧)) < 𝑑) → ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 < 𝑒)))
15092, 110, 137, 149syl3c 66 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 < 𝑒)
15199, 105, 108, 109, 150lelttrd 10195 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡) < 𝑒)
15268, 151eqbrtrd 4675 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)
153152expr 643 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
15425, 35, 38, 53, 153wlogle 10561 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
155154ralrimivva 2971 . . . . . . . . 9 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) → ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
156155ex 450 . . . . . . . 8 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) → (∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒) → ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
157156anassrs 680 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒) → ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
158157reximdva 3017 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒) → ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
15915, 158mpd 15 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
160 r19.12 3063 . . . . 5 (∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒) → ∀𝑦 ∈ (𝐴[,]𝐵)∃𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
161159, 160syl 17 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ∀𝑦 ∈ (𝐴[,]𝐵)∃𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
162161ralrimiva 2966 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∃𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
163 ralcom 3098 . . 3 (∀𝑒 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∃𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
164162, 163sylib 208 . 2 (𝜑 → ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
165 ax-resscn 9993 . . . 4 ℝ ⊆ ℂ
16637, 165syl6ss 3615 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
167 ssid 3624 . . 3 ℂ ⊆ ℂ
168 elcncf2 22693 . . 3 (((𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))))
169166, 167, 168sylancl 694 . 2 (𝜑 → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))))
1709, 164, 169mpbir2and 957 1 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574   class class class wbr 4653  cmpt 4729  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  *cxr 10073   < clt 10074  cle 10075  cmin 10266  +crp 11832  (,)cioo 12175  [,]cicc 12178  abscabs 13974  cnccncf 22679  vol*covol 23231  volcvol 23232  MblFncmbf 23383  𝐿1cibl 23386  citg 23387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437
This theorem is referenced by:  ftc2  23807
  Copyright terms: Public domain W3C validator