MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabsn Structured version   Visualization version   GIF version

Theorem rabsn 4256
Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.)
Assertion
Ref Expression
rabsn (𝐵𝐴 → {𝑥𝐴𝑥 = 𝐵} = {𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem rabsn
StepHypRef Expression
1 eleq1 2689 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
21pm5.32ri 670 . . . 4 ((𝑥𝐴𝑥 = 𝐵) ↔ (𝐵𝐴𝑥 = 𝐵))
32baib 944 . . 3 (𝐵𝐴 → ((𝑥𝐴𝑥 = 𝐵) ↔ 𝑥 = 𝐵))
43abbidv 2741 . 2 (𝐵𝐴 → {𝑥 ∣ (𝑥𝐴𝑥 = 𝐵)} = {𝑥𝑥 = 𝐵})
5 df-rab 2921 . 2 {𝑥𝐴𝑥 = 𝐵} = {𝑥 ∣ (𝑥𝐴𝑥 = 𝐵)}
6 df-sn 4178 . 2 {𝐵} = {𝑥𝑥 = 𝐵}
74, 5, 63eqtr4g 2681 1 (𝐵𝐴 → {𝑥𝐴𝑥 = 𝐵} = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {cab 2608  {crab 2916  {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-rab 2921  df-sn 4178
This theorem is referenced by:  unisn3  4453  sylow3lem6  18047  lineunray  32254  pmapat  35049  dia0  36341  nzss  38516  lco0  42216
  Copyright terms: Public domain W3C validator